Hickel, T.; Uijttewaal, M.; Grabowski, B.; Neugebauer, J.: Determination of symmetry reduced structures by a soft-phonon analysis in Ni2MnGa. MRS Fall Meeting 2007, Boston, MA, USA, November 26, 2007 - November 30, 2007. Magnetic Shape Memory Alloys, (2008)
Zhou, X.; Hickel, T.; Gault, B.; Ophus, C.; Liebscher, C.; Dehm, G.; Raabe, D.: Exploring the Relationship Between Grain Boundary Structure and Chemical Composition at the Atomic Level. International Conference on Intergranular and Interphase Boundaries in Materials (IIB 2024), Beijing, China (2024)
Neugebauer, J.; Yang, J.; Todorova, M.; Hickel, T.: Constructing Defect Phase Diagrams from Ab Initio Calculations and CALPHAD Concepts. TMS Annual Meeting and Exhibition, San Diego, CA, USA (2023)
Neugebauer, J.; Körmann, F.; Hickel, T.: Ab Initio Descriptors to Guide Materials Design in High-dimensional Chemical and Structural Configuration Spaces. TMS Annual Meeting and Exhibition, San Diego, CA, USA (2022)
Neugebauer, J.; Zendegani, A.; Hickel, T.: Construction and Application of Defect Phase Diagrams. TMS Annual Meeting and Exhibition, Anaheim, CA, USA (2022)
Neugebauer, J.; Zendegani, A.; Hickel, T.: Defect phase diagrams as novel tool to understand and design tailored defect structures in advanced steels. Thermec2021, Virtual Meeting, Vienna, Austria (2021)
Hickel, T.: Application of Density Functional Theory in the Context of Phase Diagram Modelling. MSIT Winter School on Materials Chemistry, Virtual Event (2021)
Janßen, J.; Hickel, T.; Neugebauer, J.: pyiron – an integrated development environment for ab initio thermodynamics. Potential Workshop, ICAMS, virtual, Bochum, Germany (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…