Jägle, E. A.: Impact of the process gas atmosphere in Laser Additive Manufacturing – desired and undesired effects. Alloys for Additive Manufacturing Symposium 2018, Sheffield, UK (2018)
Kürnsteiner, P.; Wilms, M. B.; Weisheit, A.; Jägle, E. A.; Raabe, D.: Preventing the Coarsening of Al3Sc Precipitates by the Formation of a Zr-rich Shell During Laser Metal Deposition. TMS2018 Annual Meeting & Exhibition, Phoenix, AZ, USA (2018)
Jägle, E. A.: Ex-situ and in-situ heat treatment of alloys during Laser Additive Manufacturing. AWT Kolloquium, Institut für Werkstofftechnik, Bremen, Germany (2017)
Jägle, E. A.: Additive Manufacturing and 3D Printing - What’s beyond the hype? Institute Lecture at Indian Institute of Technology Roorkee, Roorkee, India (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Plenary presentation, Advances in Materials & Processing: Challenges and Opportunities, Indian Institute of Technology Roorkee, Roorkee, India (2017)
Jägle, E. A.: Exploiting the Intrinsic Heat Treatment during Laser Additive Manufacturing to trigger Precipitation Reactions. International Mechanical Engineering Congress & Exposition (IMECE), Tampa, FL, USA (2017)
Kürnsteiner, P.; Wilms, M. B.; Weisheit, A.; Jägle, E. A.; Raabe, D.: In-process precipitation strengthening in Al–Sc during Laser Metal Deposition by exploiting the Intrinsic Heat Treatment. Alloys for Additive Manufacturing Symposium, Zürich, Switzerland (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Seminar talk at Culham Center for Fusion Energy, Oxford, Oxford, UK (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Laser-Kolloquium at Fraunhofer Institut für Lasertechnik, Aachen, Aachen, Germany (2017)
Jägle, E. A.: Alloys for Additive Manufacturing, Alloys by Additive Manufacturing. Seminar talk at Institut für Umformtechnik und Leichtbau, TU Dortmund, Dortmund, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
In this project, we employ atomistic computer simulations to study grain boundaries. Primarily, molecular dynamics simulations are used to explore their energetics and mobility in Cu- and Al-based systems in close collaboration with experimental works in the GB-CORRELATE project.