Hou, J.; Zhang, Z.; Preis, W.; Sitte, W.; Dehm, G.: Electrical properties and structure of grain boundaries in n-conducting BaTiO3 ceramics. Journal of the European Ceramic Society 31 (5), pp. 763 - 771 (2011)
Cha, L.; Clemens, H.; Dehm, G.: Microstructure evolution and mechanical properties of an intermetallic Ti–43.5Al–4Nb–1Mo–0.1B alloy after ageing below the eutectoid temperature. International Journal of Materials Research 102 (6), pp. 703 - 708 (2011)
Heinz, W.; Pippan, R.; Dehm, G.: Investigation of the fatigue behavior of Al thin films with different microstructure. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 527 (29-30), pp. 7757 - 7763 (2010)
Fischer, F. D.; Cha, L.; Dehm, G.; Clemens, H. J.: Can local hot spots induce α2/γ lamellae during incomplete massive transformation of γ-TiAl alloys? Intermetallics 18 (5), pp. 972 - 976 (2010)
Fischer , F. D.; Waitz, T.; Scheu, C.; Cha, L.; Dehm, G.: Study of nanometer-scaled lamellar microstructure in a Ti–45Al–7.5Nb alloy – Experiments and modeling. Intermetallics 18 (4), pp. 509 - 517 (2010)
Matoy, K.; Detzel, T.; Müller , M.; Motz, C.; Dehm, G.: Interface fracture properties of thin films studied by using the micro-cantilever deflection technique. Surface and Coatings Technology 204 (6-7), pp. 878 - 881 (2009)
Dehm, G.: Miniaturized single-crystalline fcc metals deformed in tension: New insights in size-dependent plasticity. Progress in Materials Science 54 (6), pp. 664 - 688 (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.