Ram, F.; Zaefferer, S.; Jäpel, T.; Raabe, D.: Error analysis of the crystal orientations and disorientations obtained by the classical electron backscatter diffraction technique. Journal of Applied Crystallography 48 (3), pp. 797 - 813 (2015)
Schäffer, A. K.; Jäpel, T.; Zaefferer, S.; Abart, R.; Rhede, D.: Lattice strain across Na–K interdiffusion fronts in alkali feldspar: An electron back-scatter diffraction study. Physics and Chemistry of Minerals 41 (10), pp. 795 - 804 (2014)
Zaefferer, S.; Elhami, N. N.; Konijnenberg, P. J.; Jäpel, T.: Quantitative Microstructure Characterization by Application of Advanced SEM-Based Electron Diffraction Techniques. Microscopy and Microanalysis 2013, Indianapolis, IN, USA (2013)
Jäpel, T.: Grundlagen der Kreuzkorrelationsmethode (delta-EBSD): Einführung in CrossCourt3 (CC3) und Erfahrungen in der praktischen Anwendung von CC3. Seminar Talk at Arbeitskreis EBSD in Garbsen, Garbsen, Germany (2012)
Kords, C.; Jäpel, T.; Eisenlohr, P.; Roters, F.: Residual stress prediction by considering dislocation density advection in 3D applied to single-crystal bending. Euromat 2011, Montpellier, France (2011)
Zaefferer, S.; Jäpel, T.; Tasan, C. C.; Konijnenberg, P.: Detailed observation of martensite transformation and twinning in TRIP and TWIP steels using advanced SEM diffraction techniques. ICOMAT 2011, Osaka, Japan (2011)
Kords, C.; Jäpel, T.; Eisenlohr, P.; Roters, F.: Residual stress prediction by considering dislocation density advection in 3D applied to single-crystal bending. 2nd International Conference on Material Modelling ICMM 2, Paris, France (2011)
Ram, F.; Zaefferer, S.; Jäpel, T.: Error Analysis of the Crystal Orientations and Misorientations obtained by the Classical Electron Backscatter Diffraction Method. RMS EBSD 2014, London, UK (2014)
Ram, F.; Zaefferer, S.; Jäpel, T.: On the accuracy and precision of orientations obtained by the conventional automated EBSD method. RMS EBSD 2014, London, UK (2014)
Jäpel, T.: Feasibility study on local elastic strain measurements with an EBSD pattern cross correlation method in elastic-plastically deforming material. Dissertation, RWTH Aachen, Aachen, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…