von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Atomistic study of the Hydrogen enhanced local plasticity (HELP) mechanism. ADIS 2010, Mechanical Properties, Ringberg, Germany (2010)
Himmerlich, M.; Lorenz, P.; Lymperakis, L.; Gutt, R.; Neugebauer, J.; Krischok, S.: GaN(0001) Surface States: A Comparison Between Photoelectron Spectroscopy and Density Functional Theory. International Workshop on Nitride Semiconductors, Tampa, Florida, USA (2010)
Lymperakis, L.; Neugebauer, J.: Ab initio Based Growth Simulations of III-Nitride Nanowires. International Workshop on Nitride Semiconductors, Tampa, Florida, USA (2010)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Embrittlement in metals: An atomistic study of the Hydrogen enhanced local plasticity (HELP) mechanism. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
Lymperakis, L.; Neugebauer, J.: Ab-initio based growth simulations of III-Nitride nanowires. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Nikolov, S.; Petrov, M.; Lymperakis, L.; Friák, M.; Sachs, C.; Fabritius, H.; Neugebauer, J.; Raabe, D.: Extremal stiffness of crustacean cuticle through hierarchical optimization: Theory, modeling, and experiment. 3rd International Conference on Mechanics of Biomaterials & Tissues, multiscale modeling of tissue mechanical properties, Clearwater Beach, FL, USA (2009)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Understanding embrittlement in metals: A multiscale study of the Hydrogen-enhanced local plasticity mechanism. Materials Research Society (MRS) Fall meeting, Boston, MA, USA (2009)
Lymperakis, L.; Neugebauer, J.: Adatom Kinetics, Thermodynamics, and Si Incorporation on Non-Polar III-Nitride Surfaces: Implications on Nanowire Growth. 8th nternational Conference on Nitride Semiconductors, Jeju Island, South Korea (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…