Fabritius, H.-O.; Enax, J.; Wu, X.; Epple, M.; Raabe, D.: Structure-property relations in biological composite materials: An inspiration source for synthetic materials. 79th Annual Meeting of the DPG and DPG Spring Meeting 2015, Berlin, Germany (2015)
Fabritius, H.-O.: Alternative Präparationsmethoden für nichtmetallische Werkstoffe. Fachtagung Mikroskopie und Präparation (mikpräp) der Gesellschaft für Materialografie Rhein Ruhr e.V. (gmr2), Solingen, Germany (2015)
Fabritius, H.-O.: Structure-property relations in biological composite materials – The arthropod exoskeleton. Chemical Engineering and Materials Science Seminar, Michigan State University, East Lensing, MI, USA (2014)
Enax, J.; Fabritius, H.-O.; Roters, F.; Raabe, D.; Epple, M.: Synthetic dental composite materials inspired by the hierarchical organization of shark tooth enameloid. Third winter school within the DFG priority programme 1420 "Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials", Potsdam, Germany (2014)
Huber, J.; Fabritius, H.-O.; Griesshaber, E.; Schmahl, W. W.; Ziegler, A. S.: Varying mechanical properties within the incisive cuticle of the terrestrial isopod Porcellio scaber resulting from region-dependent ultrastructure, elemental distribution and arrangement of calcite crystals. DGM Bio-inspired Materials: International Conference on Biological Material Science, Potsdam, Germany (2014)
Fabritius, H.-O.: Structure-property relations in biological composite materials. Seminar, Department of Earth- and Environmental Sciences, LMU Munich, München, Germany (2014)
Fabritius, H.-O.; Hennig, S.; Hild, S.; Soor, C.; Ziegler, A. S.: Influence of Near-Physiological Salines and Organic Matrix Proteins from Sternal ACC-Deposits of Porcellio scaber on CaCO3 Precipitation. 12th International Symposium on Biomineralization, Freiberg, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…