Vatti, A. K.; Todorova, M.; Neugebauer, J.: Ab Initio Determined Phase Diagram of Clean and Solvated Muscovite Mica Surfaces. Langmuir 32 (4), pp. 1027 - 1033 (2016)
Todorova, M.; Neugebauer, J.: Connecting semiconductor defect chemistry with electrochemistry: Impact of the electrolyte on the formation and concentration of point defects in ZnO. Surface Science 631, pp. 190 - 195 (2015)
Todorova, M.; Neugebauer, J.: Extending the concept of defect chemistry from semiconductor physics to electrochemistry. Physical Review Applied 1 (1), 014001 (2014)
Soon, A.; Wong, L.; Lee, M.; Todorova, M.; Delley, B.; Stampfl, C.: Nitrogen adsorption and thin surface nitrides on Cu(111) from first-principles. Surface Science 601, pp. 4775 - 4785 (2007)
Kenmoe, S.; Todorova, M.; Biedermann, P. U.; Neugebauer, J.: Impact of the vapour pressure of water on the equilibrium shape of ZnO nanoparticles: An ab-initio study. In APS March Meeting 2014, abstract #Q2.009. APS March Meeting 2014 , Denver, CO, USA, March 03, 2014 - March 07, 2014. (2014)
Kenmoe, S.; Todorova, M.; Biedermann, P. U.; Neugebauer, J.: Impact of the vapour pressure of water on the equilibrium shape of ZnO nanoparticles: An ab-initio study. In DPG Spring Meeting 2014, Abstract: O50.6. DPG Spring Meeting 2014 , Dresden, Germany, March 30, 2014 - April 04, 2015. (2014)
Todorova, M.; Surendralal, S.; Deißenbeck, F.; Wippermann, S. M.; Neugebauer, J.: Atomic insights into fundamental processes at electrochemical solid/liquid interface by ab initio calculations. 38th Topical Meeting of the International Society of Electrochemistry: Nanomaterials in Electrochemistry, Manchester, UK (2024)
Todorova, M.: Future directions in materials from modelling. Future directions in materials research in Europe organised by the Materials Australia VIC-TAS Branch/RMIT Europe, Online (2024)
Todorova, M.; Surendralal, S.; Deißenbeck, F.; Wippermann, S. M.; Neugebauer, J.: Ab Initio Calculations for electrified solid/liquid interfaces – Challenges, insights and Opportunities. GRC Aqueous Corrosion: Corrosion Challenges and Opportunities for the Energy Transition, New London, NH, USA (2024)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.