Huber, J.; Fabritius, H.-O.; Griesshaber, E.; Ziegler, A. S.: Function-related adaptations of ultrastructure, mineral phase distribution and mechanical properties in the incisive cuticle of mandibles of Porcellio scaber Latreille, 1804. Journal of Structural Biology 188 (1), pp. 1 - 15 (2014)
Huber, J.; Fabritius, H.-O.; Griesshaber, E.; Schmahl, W. W.; Ziegler, A. S.: Varying mechanical properties within the incisive cuticle of the terrestrial isopod Porcellio scaber resulting from region-dependent ultrastructure, elemental distribution and arrangement of calcite crystals. DGM Bio-inspired Materials: International Conference on Biological Material Science, Potsdam, Germany (2014)
Huber, J.; Ziegler, A. S.; Fabritius, H.-O.; Griesshaber-Schmahl, E.: Be inspired by isopod cuticle: Unusual cuticle organisation and mechanical properties within the incisive edge of the mandibles in two Crustacean species. EURO BioMAT Conference, Weimar, Germany (2013)
Huber, J.; Ziegler, A. S.; Fabritius, H.-O.; Griesshaber-Schmahl, E.: Be inspired by isopod cuticle: Unusual cuticle organisation and mechanical properties within the incisive edge of the mandibles in two Crustacean species. EURO BioMAT Conference, Weimar, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…