Ramana, E. V.; Durairajan, A.; Kavitha, D.; Tobaldi, D. M.; Zavašnik, J.; Bdikin, I.; Valente, M. A.: Enhanced magnetoelectric and energy storage performance of strain-modified PVDF-Ba0.7Ca0.3TiO3-Co0.6Zn0.4Fe2O4nanocomposites. Journal of energy storage 87, 111454 (2024)
Öcal, E. B.; Sajadifa, S. V.; Sellner, E. P. K.; Vollmer, M.; Heidarzadeh, A.; Zavašnik, J.; Niendorf, T.; Groche, P.: Functionally Graded AA7075 Components Produced via Hot Stamping: A Novel Process Design Inspired from Analysis of Microstructure and Mechanical Properties. Advanced Engineering Materials - Special Issue: Structural Materials 25 (15), 2201879 (2023)
Sajadifar, S. V.; Suckow, T.; Chandra, C. K.; Heider, B.; Heidarzadeh, A.; Zavašnik, J.; Reitz, R.; Oechsner, M.; Groche, P.; Niendorf, T.: Assessment of the impact of process parameters on the final material properties in forming of EN AW 7075 employing a simulated forming process. Journal of Manufacturing Processes 86, pp. 336 - 353 (2023)
Entezari, H.; Kashi, M. A.; Alikhanzadeh-Arani, S.; Montazer, A.H.; Zavašnik, J.: In situ precipitation synthesis of FeNi/ZnO nanocomposites with high microwave absorption properties. Materials Chemistry and Physics 266, 124508 (2021)
Žerjav, G.; Teržan, J.; Djinović, P.; Barbieriková, Z.; Hajdu, T.; Brezová, V.; Zavašnik, J.; Kovač, J.; Pintar, A.: TiO2–β–Bi2O3 junction as a leverage for the visible-light activity of TiO2 based catalyst used for environmental applications. Catalysis Today 361, pp. 165 - 175 (2021)
Djinović, P.; Zavašnik, J.; Teržan, J.; Jerman, I.: Role of CO2 During Oxidative Dehydrogenation of Propane Over Bulk and Activated-Carbon Supported Cerium and Vanadium Based Catalysts. Catalysis Letters 151 (10), pp. 2816 - 2832 (2021)
Taherzadeh Mousavian, R.; Zavašnik, J.; Heidarzadeh, A.; Bahramyan, M.; Vijayaraghavan, R. K.; McCarthy, É.; Clarkin, O. M.; McNally, P. J.; Brabazon, D.: Development of BMG-B2 nanocomposite structure in HAZ during laser surface processing of ZrCuNiAlTi bulk metallic glasses. Applied Surface Science 505, 144535 (2020)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Understanding hydrogen-assisted embrittlement of advanced high-strength steels is decisive for their application in automotive industry. Ab initio simulations have been employed in studying the hydrogen trapping of Cr/Mn containing iron carbides and the implication for hydrogen embrittlement.
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…