Raabe, D.: Crystal Mechanics of Metals and Biological Matter. Colloquium lecture at Max Planck Institute for Colloids and Interfaces, Golm/Potsdam (2007)
Nikolov, S.; Sachs, C.; Fabritius, H.; Raabe, D.: Microstructure and micromechanics of hard biological tissues: From lobster cuticle to human bone. Seminar talk at Université Catholique de Louvain, Dept. of Applied Sciences, Louvain, Belgium (2007)
Fabritius, H.; Sachs, C.; Raabe, D.: Influence of structural principles on the mechanics and efficiency of different biological materials using lobster cuticle as a model material. Second International Conference on Mechanics of Biomaterials & Tissues (ICMBT 2007), Lihue, HI, USA (2007)
Ma, A.; Roters, F.; Raabe, D.: Introducing the Effect of Grain Boundaries into Crystal Plasticity FEM Using a Non Local Dislocation Density Based Constitutive Model. Theory and Application to FCC Bi-Crystals. Euromech Colloquium 463, MPI für Eisenforschung GmbH, Düsseldorf, Germany (2007)
Bieler, T. R.; Roters, F.; Raabe, D.: Computational modeling of TiAl microstructures which developed microcracked grain boundaries. Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany (2006)
Bieler, T. R.; Roters, F.; Raabe, D.: Computational modeling of TiAl microstructures which developed microcracked grain boundaries. GKSS Research Center, Geesthacht, Germany (2006)
Raabe, D.; Zaafarani, N.; Roters, F.: 3D Study on Texture and Size Effects Below Nanoindents in Cu Single Crystals Using 3D FIB-EBSD and Crystal Plasticity Finite Element Simulations. MRS Fall Conference, Boston, MA, USA (2006)
Bastos, A.; Zaefferer, S.; Raabe, D.: 3D EBSD Characterization of a Nanocrystalline NiCo Alloy by use of a High-resolution Field Emission SEM-EBSD Coupled with Serial Sectioning in a Focused Ion Beam Microscope (FIB). MRS Fall Conference, Boston, MA, USA (2006)
Raabe, D.; Al-Sawalmih, A.; Raue, L.; Klein, H.; Fabritius, H.: Texture of Alpha-chitin and Calcite as a Microscopic Composite Design and Macroscopic Biological Construction Principle of the Exoskeleton of the Lobster Homarus americanus. MRS Fall Conference, Boston, MA, USA (2006)
Sachs, C.; Fabritius, H.; Raabe, D.: Mechanical Properties of the Lobster Cuticle Investigated by Bending Tests and Digital Image Correlation. MRS Fall Conference, Boston, MA, USA (2006)
Godara, A.; Raabe, D.; Green, S.: The influence of sterilization processes on the micromechanical properties of carbon fiber reinforced PEEK composites for bone-implant applications. 2006 MRS Fall Conference, Boston, MA, USA (2006)
Ohsaki, S.; Raabe, D.; Hono, K.: On the Mechanism of Mechanical Mixing and Deformation-induced Amorphization in Heavily Drawn Cu-Nb-Ag in situ Composite Wires. MRS Fall Conference, Boston, MA, USA (2006)
Raabe, D.; Sander, B.; Friák, M.; Neugebauer, J.: Bottom up design of novel Titanium-based biomaterials through the combination of ab-initio simulations and experimental methods. Materials Research Society fall meeting, Boston, MA, USA (2006)
Sandim, M.; Stamopoulos, D.; Sandim, H.; Ghivelder, L.; Thilly, L.; Vidal, V.; Lecouturier, F.; Raabe, D.: Strain Effects on the Magnetic Properties of Cu-Nb Nanofilamentary Composites. MRS Fall Conference, Boston, MA, USA (2006)
Bieler, T. R.; Crimp, M. A.; Roters, F.; Raabe, D.: Computational modeling of TiAl microstructures which developed microcracked grain boundaries. Institut für Metallkunde und Metallphysik RWTH-Aachen, Aachen, Germany (2006)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…