Hassel, A. W.; Bello-Rodriguez, B.; Smith, A. J.; Chen, Y.; Milenkovic, S.: Preparation and specific properties of single crystalline metallic nanowires. Physica Status Solidi B 247, pp. 2380 - 2392 (2010)
Milenkovic, S.; Smith, A. J.; Hassel, A. W.: Single crystalline Molybdenum nanowires and nanowire arrays. J. Nanosci. Nanotechnol. 9 (6), pp. 3411 - 3417(7) (2009)
Mozalev, A.; Smith, A. J.; Borodin, S.; Plihauka, A.; Hassel, A. W.; Sakairi, M.; Takahashi, H.: Growth of multioxide planar film with the nanoscale inner structure via anodizing Al/Ta layers on Si. Electrochim. Acta 54, pp. 935 - 945 (2009)
Cimalla, V.; Röhlig, C.-C.; von Pezoldt, J.; Niebelschütz, M.; Ambacher, O.; Brückner, K.; Hein, M.; Weber, J.; Milenkovic, S.; Smith, A. J.et al.; Hassel, A. W.: Nanomechanics of single crystalline tungsten nanowires. J. Nanomater. 2008, pp. 638947 - 638956 (2008)
Abelev, E.; Smith, A. J.; Hassel, A. W.; Ein-Eli, Y.: Potassium Sorbate Solutions as Copper Chemical Mechanical Planarization (CMP) Based Slurries. Electrochim. Acta 52, pp. 5150 - 5158 (2007)
Brittman, S.; Smith, A. J.; Milenkovic, S.; Hassel, A. W.: Copper Nanowires and Silver Micropore Arrays from the Electrochemical Treatment of a Directionally Solidified Silver-Copper Eutectic. Electrochim. Acta 53, pp. 324 - 329 (2007)
Hassel, A. W.; Smith, A. J.: Single particle impact experiments for studying particle induced flow corrosion. Corrosion Science 49, pp. 231 - 239 (2007)
Abelev, E.; Smith, A. J.; Hassel, A. W.; Ein Eli, Y.: Copper Repassivation Characteristics in Carbonate-Based Solutions. J. Electrochem. Soc. 153, pp. B337 - B343 (2006)
Hassel, A. W.; Milenkovic, S.; Smith, A. J.: Large scale synthesis of single crystalline tungsten nanowires with extreme aspect ratios. Workshop on Engineering of Functional Interfaces, Hasselt Univ, Diepenbeek, Belgium, June 18, 2009 - June 19, 2009. Physica Status Solidi A-Applications and Materials Science 207 (4), pp. 858 - 863 (2010)
Smith, A. J.; Stratmann, M.; Hassel, A. W.: Investigation of Erosion - Corrosion Phenomena with the Help of Single Impact Impingement Studies. In: Japan Society for Corrosion Engineering Materials and Environments. 2007 Spring Meeting of the Japan Society for Corrosion Engineering Materials and Environments, Tokyo, Japan, May 09, 2007 - May 11, 2007. (2007)
Hassel, A. W.; Milenkovic, S.; Smith, A. J.: Nanowires and Nanowire Arrays by an Electrochemical Structuring of Directionally Solidified Eutectics. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Smith, A. J.; Hassel, A. W.: Direct Manipulation of Nano Wires with Nanotweezers for mechanical testing, electrical and spectroscopic characterization. Bunsentagung 2008, Saarbrücken, Germany (2008)
Milenkovic, S.; Smith, A. J.; Hassel, A. W.: Self-organised Metallic Nanostructures via Directional Solidification of Eutectics. EUROMAT 2007, European Congress and Exhibition on Advanced Materials and Processes, Nürnberg, Germany (2007)
Smith, A. J.; Hassel, A. W.; Milenkovic, S.: Selective electrodissolution of Directionally Solidified Eutectic Alloys for "Mass Production" of Metallic Nanowires with Extreme Aspect Rations. 58th Annual Meeting of the International Society of Electrochemistry, Banff, Canada (2007)
Hassel, A. W.; Smith, A. J.: Fabrication and characterisation of high aspect ratio refractory metal nanowires. 2nd International Conference on Surfaces, Coatings and Nanostructured Materials, Alvor, Algarve, Portugal (2007)
Smith, A. J.; Stratmann, M.; Hassel, A. W.: Investigation of Erosion -Corrosion Phenomena with the Help of Single Impact Impingement Studies. 2007 Spring Meeting of the Japan Society for Corrosion Engineering Materials and Environments, Tokyo, Japan (2007)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Understanding hydrogen-assisted embrittlement of advanced high-strength steels is decisive for their application in automotive industry. Ab initio simulations have been employed in studying the hydrogen trapping of Cr/Mn containing iron carbides and the implication for hydrogen embrittlement.
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…