Pyczak, F.; Liang, Z.; Neumeier, S.; Rao, Z.: Stability and Physical Properties of the L12-γ' Phase in the CoNiAlTi-System. Metallurgical and Materials Transactions A 54 (5), pp. 1661 - 1670 (2023)
Distl, B.; Hauschildt, K.; Rashkova, B.; Pyczak, F.; Stein, F.: Phase Equilibria in the Ti-Rich Part of the Ti–Al–Nb System-Part I: Low-Temperature Phase Equilibria Between 700 and 900 °C. Journal of Phase Equilibra and Diffusion 43, pp. 355 - 381 (2022)
Distl, B.; Hauschildt, K.; Pyczak, F.; Stein, F.: Phase Equilibria in the Ti-Rich Part of the Ti–Al–Nb System-Part II: High-Temperature Phase Equilibria Between 1000 and 1300 °C. Journal of Phase Equilibra and Diffusion 43, pp. 554 - 575 (2022)
Song, L.; Appel, F.; Stark, A.; Lorenz, U.; He, J.; He, Z.; Lin, J.; Zhang, T.; Pyczak, F.: On the reversibility of the α2/ω0 phase transformation in a high Nb containing TiAl alloy during high temperature deformation. Journal of Materials Science & Technology 93, pp. 96 - 102 (2021)
Heilmaier, M.; Krüger, M.; Pyczak, F.; Schloffer, M.; Stein, F. (Eds.): Intermetallics 2023. Intermetallics 2023, Bad Staffelstein, Germany, October 02, 2023 - October 06, 2023. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2023), 122 pp.
Heilmaier, M.; Krüger, M.; Palm, M.; Pyczak, F.; Stein, F. (Eds.): Intermetallics 2021. Intermetallics 2021, Kloster Banz, Bad Staffelstein, Germany, October 04, 2021 - October 08, 2021. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2021), 208 pp.
Distl, B.; Palm, M.; Stein, F.; Rackel, M. W.; Hauschildt, K.; Pyczak, F.: Phase equilibria investigations in the ternary Ti–Al–Nb system at elevated temperatures. In: Proceedings Intermetallics, pp. 170 - 171. Intermetallics, Bad Staffelstein, Germany, September 30, 2019 - October 04, 2019. (2019)
Stein, F.; Distl, B.; Hauschildt, K.; Pyczak, F.: Stability, Composition Range, and Phase Equilibria of the Nb-stabilized, TiAl-based Phases ωo and O. IWTA2023, 6th Int. Workshop on Titanium Aluminides, Toulouse, France (2023)
Stein, F.; Distl, B.; Rashkova, B.; Hauschildt, K.; Pyczak, F.: Destabilization of the ωo Phase of the Ti-Al-Nb System by Mo and W Additions. TOFA 2022, 18th Discussion Meeting on Thermodynamics of Alloys, Krakow, Poland (2022)
Stein, F.; Distl, B.; Palm, M.; Hauschildt, J.; Rackel, M. W.; Pyczak, F.; Mayer, S.; Yang, Y.; Chen, H.-L.; Engström, A.: Improvement of a CALPHAD Database for the Development of Next Generation TiAl Alloys by Targeted Key Experiments on High-temperature Phase Equilibria – The EU Project ADVANCE. Hume-Rothery Symposium: Phase Equilibria and Kinetics for Materials Design and Engineering, TMS 2020 Annual Meeting & Exhibition, San Diego, CA, USA (2020)
Palm, M.; Distl, B.; Kahrobaee, Z.; Stein, F.; Mayer, S.; Hauschildt, K.; Rackel, M.; Pyczak, F.; Yang, Y.; Chen, H.-L.et al.; Engström, A.: ADVANCE - Advancing a CALPHAD Database for Next Generation TiAl Alloys. 65th Metal Research Colloquium organized by the Department for Metal Research and Materials Testing of the University Leoben, Lech am Arlberg, Austria (2019)
Distl, B.; Palm, M.; Stein, F.; Rackel, M. W.; Hauschildt, K.; Pyczak, F.: Phase equilibria investigations in the ternary Ti–Al–Nb system at elevated temperatures. Intermetallics 2019, Bad Staffelstein, Germany (2019)
Distl, B.: Phase equilibria and phase transformations of Ti–Al–X (X=Nb, Mo, W) alloys for high-temperature structural applications between 700 and 1300 °C. Dissertation, Ruhr-Universität Bochum, Fakultät für Maschinenbau, Germany (2022)
Palm, M.; Stein, F.; Pyczak, F.: Co-organization and co-chair the priority topic “Hochtemperaturwerkstoffe“ (high temperature materials) at the 62. Metallkunde Kolloquium. (2016)
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
In this project nanoprecipitates are designed via elastic misfit stabilization in Fe–Mn maraging steels by combining transmission electron microscopy (TEM) correlated atom probe tomography (APT) with ab initio simulations. Guided by these predictions, the Al content of the alloys is systematically varied...
Interstitial alloying can improve the mechanical properties of high-entropy alloys (HEAs). In some cases, the interstitial-alloying impact is very different from those in conventional alloys. We investigate the effect of interstitial alloying in fcc CrMnFeCoNi HEA as well as bcc refractory HEAs, particularly focusing on the solution energies and…
Electro-responsive interfaces alter their properties in response to an electric potential trigger. Hence, such 'smart' interfaces offer exciting possibilities for applications in, for instance, microfluidics, separation systems, biosensors and -analytics.
Future technology challenges will no longer be simply addressed by today's materials and processing solutions, which are often based on trial and error. Instead, guidance will be attained from correlative experimental and theoretical research bridging all length scales.
Within the EU project „ADVANCE - Sophisticated experiments and optimisation to advance an existing CALPHAD database for next generation TiAl alloys”, MPIE collaborated with Thermocalc-Software AB, Stockholm, Montanuniversität Leoben and Helmholtz-Zentrum Hereon, Geesthacht. At MPIE the focus lay on the production and heat treatments of model alloys…
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…
Scandium-containing aluminium alloys are currently attracting interest as candidates for high-performance aerospace structural materials due to their outstanding combination of strength, ductility and corrosion resistance. Strengthening is achieved by precipitation of Al3Sc-particles upon ageing heat treatment.