Lill, K. A.; Stratmann, M.; Frommeyer, G.; Hassel, A. W.: On the corrosion resistance of a new class of FeCrAl light weight ferritic steels. 55th Meeting of the International Society of Electrochemistry, Thessaloniki, Greece (2004)
Falat, L.; Schneider, A.; Sauthoff, G.; Frommeyer, G.: Iron aluminium alloys with strengthening carbides and intermetallic phases for high-temperature applications. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPIE Düsseldorf (2004)
Frommeyer, G.; Derder, C.; Jiménez, J. A.: High temperature plasticity -superplasticity and creep- of Fe3Al based alloys. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPIE Düsseldorf (2004)
Frommeyer, G.; Liu, Z. G.; Wesemann, J.; Wanderka, N.: Investigations on D03/B2 ordering in Fe3Al by X-ray Diffraction, TEM and APFIM. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPIE Düsseldorf (2004)
Stein, F.; Schneider, A.; Frommeyer, G.: Quaternary Fe3Al-Based Alloys with Transition Metals: Effect of Alloying Additions on the Order-Disorder Transitions and the Mechanical Behaviour. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPI für Eisenforschung GmbH, Düsseldorf, Germany (2004)
Konrad, J.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Texturentwicklung beim Warmwalzen und bei der Rekristallisation von Fe3Al-Basislegierungen. Treffen des Fachausschusses Intermetallische Phasen, MPI Eisenforschung, Düsseldorf (2004)
Frommeyer, G.; Knippscheer, S.: Mikrostrukturen, Eigenschaften und Anwendungen neuentwickelter Leichtbauwerkstoffe auf der Basis von Titanaluminiden. Diehl Symposium, Lengenfeld (2003)
Frommeyer, G.: Structures and Properties of the Refractory Silicides Ti5Si3 and TiSi2 and Ti-Si-(Al) Eutectic Alloys. NATO Advanced Research Workshop: Metallic Materials with high Structural Efficiency, Kiev, Ukraine (2003)
Frommeyer, G.; Brüx, U.: Structures and Properties of Advanced High-Strength and Supra-Ductile Light-Weight Steels. EURO MAT 2003, Lausanne, Schweiz (2003)
Frommeyer, G.: Neuere Entwicklungen der Stahlforschung: Hochfeste und supraduktile TRIP/TWIP Leichtbaustähle. Nordrhein-Westfälische Akademie der Wissenschaften, Düsseldorf, Germany (2003)
Frommeyer, G.: Superplastizität und superplastische Blechumformung von Duplex-Stählen am Beispiel der Qualität X 12 Cr Ni Mo (N) 22-5-3. VDI Seminar: Innovative Rostfreistähle, Düsseldorf (2003)
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.