Liu, W. C.; Li, Z.; Man, C.-S.; Raabe, D.; Morris, J. G.: Effect of precipitation on rolling texture evolution in continuous cast AA 3105 aluminum alloy. Materials Science and Engineering: A 434 (1-2), pp. 105 - 113 (2006)
Han, C. S.; Roters, F.; Raabe, D.: On strain gradients and size-dependent hardening descriptions in crystal plasticity frameworks. Metals and Materials International 12, 5, pp. 407 - 411 (2006)
Dorner, D.; Zaefferer, S.; Lahn, L.; Raabe, D.: Overview of Microstructure and Microtexture Development in Grain-oriented Silicon Steel. Journal of Magnetism and Magnetic Materials 304 (2), pp. 183 - 186 (2006)
Li, F.; Ardehali Barani, A.; Ponge, D.; Raabe, D.: Austenite Grain Coarsening Behavior in a Medium Carbon Si–Cr spring steel with and without Vanadium. Steel Research International 77 (8), pp. 590 - 594 (2006)
Raabe, D.; Jia, J.: Evolution of crystallinity and of crystallographic orientation in isotactic polypropylene during rolling and heat treatment. European Polymer Journal 42 (8), pp. 1755 - 1766 (2006)
Sachs, C.; Fabritius, H.; Raabe, D.: Hardness and elastic properties of dehydrated cuticle from the lobster Homarus americanus obtained by nanoindentation. Journal of Material Research 21 (8), pp. 1987 - 1995 (2006)
Nikolov, S.; Lebensohn, R. A.; Raabe, D.: Self-consistent modeling of large plastic deformation, texture and morphology evolution in semi-crystalline polymers. Journal of the Mechanics and Physics of Solids 54 (7), pp. 1350 - 1375 (2006)
Ardehali Barani, A.; Ponge, D.; Raabe, D.: Refinement of grain boundary carbides in a Si–Cr spring steel by thermomechanical treatment. Materials Science and Engineering: A 426 (1-2), pp. 194 - 201 (2006)
Godara, A.; Raabe, D.; Van Puyvelde, P.; Moldenaers, P.: Influence of flow on the global crystallization kinetics of iso-tactic polypropylene. Polymer Testing 25 (4), pp. 460 - 469 (2006)
Ma, A.; Roters, F.; Raabe, D.: On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling – Theory, experiments, and simulations. Acta Materialia 54 (8), pp. 2181 - 2194 (2006)
Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.; Zaefferer, S.: Three dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Materialia 54 (7), pp. 1707 - 1994 (2006)
Ardehali Barani, A.; Ponge, D.; Raabe, D.: Strong and Ductile Martensitic Steels for Automotive Applications. Steel Research International 77, 9-10, pp. 704 - 711 (2006)
Bastos, A.; Zaefferer, S.; Raabe, D.; Schuh, C.: Characterization of the Microstructure and Texture of Nanostructured Electrodeposited NiCo by use of Electron Backscatter Diffraction (EBSD). Acta Materialia 54, pp. 2451 - 2462 (2006)
Ma, A.; Roters, F.; Raabe, D.: A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Materialia 54, pp. 2169 - 2179 (2006)
Ma, A.; Roters, F.; Raabe, D.: Studying the effect of grain boundaries in dislocation density based crystal plasticity finite element simulations. International Journal of Solids and Structures 43, pp. 7287 - 7303 (2006)
Nikolov, S.; Han, C. S.; Raabe, D.: On the origin of size effects in small-strain elasticity of solid polymers. International Journal of Solids and Structures 44, pp. 1582 - 1592 (2006)
Raabe, D.; Romano, P.; Sachs, C.; Fabritius, H.; Al-Sawalmih, A.; Yi, S. B.; Servos, G.; Hartwig, H. G.: Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Materials Science and Engineering A 421, pp. 143 - 153 (2006)
Sachs, C.; Fabritius, H.; Raabe, D.: Experimental investigation of the elastic-plastic deformation of mineralized lobster cuticle by digital image correlation. Journal of Structural Biology 155, pp. 409 - 425 (2006)
Sandim, H. R. Z.; Hayama, A. O. F.; Raabe, D.: Recrystallization of the ODS superalloy PM-1000. Materials Science and Engineering A 430, pp. 172 - 178 (2006)
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.