Lymperakis, L.: Surface rehybridization and strain effects on the composition and the properties of ternary III Nitride alloys. 19th International Conference on Crystal Growth and Epitaxy, Keystone, CO, USA (2019)
Lymperakis, L.: Elastically Frustrated Rehybridization: Implications in Alloy Ordering and Strong Compositional Limitations in Epitaxial InGaN Films. 1st German Austrian Conference of Crystal Growth, Vienna, Austria (2018)
Lymperakis, L.: Physics, growth mechanisms, and peculiarities of III-N surfaces from ab-initio. Seminar at Institute for solid state physics, Technical University Berlin, Berlin, Germany (2017)
Lymperakis, L.: Elastically frustrated rehybridization of InGaN surfaces: Implications on growth temperature and alloy ordering. Spring school on short period superlattices, Warsaw, Poland (2017)
Lymperakis, L.: Epitaxial Growth of III-Nitrides: Insights from Density Functional Theory Calculations. Seminar at University of Crete, Physics Department, Crete, Greece (2016)
Lymperakis, L.: Interplay of kinetics and thermodynamics of epitaxially grown wide bandgap semiconductors. 10th Asian-European Conference on Plasma Surface Engineering, Jeju Island, South Korea (2015)
Lymperakis, L.; Weidlich, P. H.; Eisele, H.; Schnedler, M.; Nys, J.-P.; Grandidier, B.; Stievenard, D.; Dunin-Borkowski, R.; Neugebauer, J.; Ebert, P.: Revealing Hidden Surface States of Non-Polar GaN Facets by an Ab Initio Tailored STM Approach. 10th International Conference on Nitride Semiconductors, Washigton DC, USA (2013)
Schulz, T.; Remmele, T.; Markurt, T.; Korytov, M.; Albrecht, M.; Duff, A.; Lymperakis, L.; Neugebauer, J.: Alloy fluctuations in III-Nitrides revisited by aberration corrected transmission electron microscopy. International Workshop on Nitride Semiconductors 2012, Sapporo, Japan (2012)
Lymperakis, L.: Ab initio calculations of energetics, adatom kinetics, and electronic structure of nonpolar and semipolar III-Nitride surfaces. PolarCoN Summer School, Kostanz, Germany (2012)
Albrecht, M.; Markurt, T.; Schulz, T.; Lymperakis, L.; Duff, A.; Neugebauer, J.; Drechsel, P.; Stauss, P.: Dislocation Mechanisms and Strain Relaxation in the Growth of GaN on Silicon Substrates for Solid State Lighting. International Conference on Extended Defects in Semiconductors, Thessaloniki, Greek (2012)
Lymperakis, L.; Albrecht, M.; Neugebauer, J.: Excitonic emission from a-type screw dislocations in GaN. International Conference on Extended Defects in Semiconductors, Thessaloniki, Greek (2012)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Towards an ab-initio based understanding of H-embrittlement: An atomistic study of the HELP mechanism. Joint Hydrogenius and ICNER International Workshop on Hydrogen-Materials Interactions, Kyushu, Japan (2012)
Duff, A.; Lymperakis, L.; Neugebauer, J.: Ab-initio based comparitive study of In incorporation and surface segregation on III- and N-face {0001} InGaN surfaces. 9th International Conference of Nitride Semi-Conductors, Glasgow, UK (2011)
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.