Dehm, G.: Resolving grain boundary phase transformations by advanced STEM for fcc metals and multinary alloys. 6th International Symposium on Metastable, Amorphous and Nanostructured Materials (ISMANAM-2019), Chennai, India (2019)
Dehm, G.: Micro- and Nanomechanical Testing of Materials - From Materials Physics to Materials Design. Convegno Nazionale INSTM XII, Ischia Porto, Italy (2019)
Liebscher, C.; Meiners, T.; Peter, N. J.; Frolov, T.; Dehm, G.: Experimental discovery of grain boundary phase transformations unveiled by atomistic simulations. PICS3 2019 Meeting, Centre Interdisciplinaire de Nanoscience de Marseille, Marseille, France (2019)
Dehm, G.: Do we understand the interplay of microstructure and properties of materials: New insights by advanced microscopy techniques. MPI CPFS, Dresden, Germany (2019)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: High temperature mechanical characterization of binary Cu–X alloys produced by Combinatorial Synthesis. International conference on metallurgical coatings and thin films (ICMCTF) 2019, San Diego, CA, USA (2019)
Jeong, J.; Dehm, G.; Liebscher, C.: Advances in automatic TEM based orientation mapping with precession electron diffraction. Joint Max-Planck-Institut für Eisenforschung MPIE) / Ernst Ruska-Centre (ER-C) Workshop, Düsseldorf, Germany (2019)
Kini, M. K.; Kirchlechner, C.; Dehm, G.: Slip transmission across multiple coherent twin boundaries in nanotwinned Ag. Seminar on "Slip Transmission in nanotwinned Ag", Indian Institute of Science, Department of Materials Engineering, Bangalore, India (2019)
Kini, M. K.; Kirchlechner, C.; Dehm, G.: Slip transmission across multiple coherent twin boundaries in nanotwinned Ag. Seminar on "Slip Transmission in nanotwinned Ag", Indian Institute of Technology, Mumbai, India (2019)
Brinckmann, S.; Dehm, G.: Severe deformation of a lamellar microstructure: pearlitic steel as a case study. TMS 2019 Annual Meeting & Exhibition, San Antonio, TX, USA (2019)
Dehm, G.: Können hohe Festigkeit und Zähigkeit in Verschleißschutzschichten kombiniert werden? Eine grundlegende Untersuchung an Mo2BC. 12. Tagung Gefüge und Bruch, Bochum, Germany (2019)
Kini, M. K.; Kirchlechner, C.; Dehm, G.: On microstructural constraints for slip transfer in nanotwinned silver. ECI conference on nanomechanical testing in materials research and development VII, Malaga, Spain (2019)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Composition Dependence of Mechanical Properties of the Cubic and Hexagonal NbCo2 Laves Phases Studied by Micromechanical Testing. International Workshop on Laves Phases, Düsseldorf, Germany (2019)
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.