Dehm, G.: Resolving the interplay of nanostructure and mechanical properties in advanced materials. Karlsruher Werkstoffkolloquium im Wintersemester 2016/2017, Karlsruhe, Germany (2017)
Dehm, G.: Towards thermally stable nanocrystalline alloys with exceptional strength: Cu–Cr as a case study. 16th International Conference on Rapidly Quenched and Metastable Materials (RQ16), Leoben, Austria (2017)
Dehm, G.; Harzer, T. P.; Liebscher, C.; Raghavan, R.: High Temperature Plasticity of Cu–Cr Nanolayered and Chemically Nanostructured Cu–Cr Films. 2017 TMS Annual Meeting & Exhibition, San Diego, CA, USA (2017)
Dehm, G.; Malyar, N.; Kirchlechner, C.: Towards probing the barrier strength of grain boundaries for dislocation transmission. Electronic Materials and Applications 2017, Orlando, FL, USA (2017)
Dehm, G.; Malyar, N.; Kirchlechner, C.: Do we understand dislocation transmission through grain boundaries? PICS meeting, Luminy, Marseille, France (2017)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Fracture Behavior of Nanostructured Heavily Cold Drawn Pearlite: Influence of the Interface. TMS 2017, San Diego, CA, USA (2017)
Dehm, G.: Fracture testing of thin films: insights from synchrotron XRD and micro-cantilever experiments. 2016 MRS Fall Meeting, Boston, MA, USA (2016)
Dehm, G.; Harzer, T. P.; Dennenwaldt, T.; Freysoldt, C.; Liebscher, C.: Chemical demixing and thermal stability of supersaturated nanocrystalline CuCr alloys: Insights from advanced TEM. MS&T '16, Materials Science & Technology 2016 Conference & Exhibition, Salt Lake City, UT, USA (2016)
Dehm, G.: Resolving the interplay of nanostructure and mechanical properties by advanced electron microscopy. MSE Conference, Materials Science and Engineering, Darmstadt, Germany (2016)
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.