Biedermann, P. U.; Flechtner, K.-D.: Towards a Thermodynamic Theory of Electrochemical Reactions in Aqueous Media. A DFT Study of the Intermediates of Oxygen Reduction. 46th Symposium on Theoretical Chemistry, STC2010, Münster, Germany (2010)
Biedermann, P. U.; Flechtner, K.-D.: Theoretical Insights into the Mechanism of the Oxygen Reduction Reaction. Electrochemistry 2010, Ruhr-Universität Bochum, Bochum, Germany (2010)
Nayak, S.; Biedermann, P. U.; Erbe, A.: Spectroscopic Investigation of the Oxygen Reduction Reaction (ORR) on Semiconductor Surfaces. Electrochemistry 2010 - From microscopic understanding to global impact, Bochum, Germany (2010)
Nayak, S.; Biedermann, P. U.; Erbe, A.: Electrochemical oxygen reduction on semiconductor electrodes. 109th Annual meeting of the German Bunsen Society of Physical Chemistry (Bunsentagung), Bielefeld, Germany (2010)
Hamou, R. F.; Biedermann, P. U.; Rohwerder, M.; Blumenau, A. T.: FEM Simulation of the Scanning Electrochemical Potential Microscopy (SECPM). 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Torres, E.; Biedermann, P. U.; Blumenau, A. T.: A DFT study of Alkanethiol adsorption sites on Au(111) surfaces. 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Biedermann, P. U.; Torres, E.; Laaboudi, L.; Isik-Uppenkamp, S.; Rohwerder, M.; Blumenau, A. T.: Cathodic Delamination by a Combined Computational and Experimental Approach: The Aklylthiol/Gold Model System. Multiscale Material Modeling of Condensed Matter, MMM2007, St. Feliu de Guixols, Spain (2007)
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.