Genchev, G.; Cox, K.; Sarfraz, A.; Bosch, C.; Spiegel, M.; Erbe, A.: Sour corrosion – Investigation of anodic iron sulfide layer growth in saturated H2S saline solutions. Gordon Research Seminar-Aqueous Corrosion, New London, NH, USA (2014)
Lange, M. M.; Borodin, S.; Renner, F. U.; Spiegel, M.: Grain boundary chemistry in nickel alloys applied in 700°C coal-power plant. High Temperature Corrosion - Gordon Research Seminar , New London, NH, USA (2013)
Lange, M. M.; Borodin, S.; Renner, F. U.; Spiegel, M.: Grain boundary chemistry in nickel alloys applied in 700°C coal-power plant. High Temperature Corrosion - Gordon Research Conference, New London, NH, USA (2013)
Lange, M. M.; Borodin, S.; Renner, F. U.; Spiegel, M.: Grain boundary chemistry in nickel alloys applied in 700°C coal-power plant. High Temperature Corrosion - Gordon Research Seminar , New London, NH, USA (2013)
Lange, M. M.; Borodin, S.; Renner, F. U.; Spiegel, M.: Grain boundary chemistry in nickel alloys applied in 700°C coal-power plant. High Temperature Corrosion - Gordon Research Conference, New London, NH, USA (2013)
Brito, P.; Pinto, H.; Spiegel, M.; Klaus, M.; Genzel, C.; Pyzalla, A. R.: Phase composition and internal stress development during the oxidation of iron aluminides. ICRS-8, Denver, CO, USA (2008)
Liapina, T.; Spiegel, M.; Stein, F.: Short-term oxidation of Fe–Al: Effect of ternary elements and Al content. 4th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Interlaken, Switzerland (2007)
Asteman, H.; Lill, K. A.; Hassel, A. W.; Spiegel, M.: Preparation and electrochemical characterization by SDC of thin Cr2O3, Fe2O3 and (Cr, Fe)2O3 films thermally grown on Pt substrates. 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Bernst, R.; Spiegel, M.: Carburisation of Fe–Al alloys at 1000°C in flowing CO-H2-H2O gas mixture. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Park, E.; Spiegel, M.: Oxidation resistance of alloys for flexible tubes in dry air and KCl containing atmospheres. Eurocorr 2005, Lisbon, Portugal (2005)
Asteman, H.; Spiegel, M.: Model oxide films- A novel approach to study the chemical breakdown of native HT-oxide barriers. Gordon Research Conference - High Temperature Corrosion, New London, NH, USA (2005)
Parezanovic, I.; Spiegel, M.: Role of B and Mn segregation on the surface chemistry of Fe–B–Mn - model alloys. Gordon Research Conference - High Temperature Corrosion, New London, NH, USA (2005)
Pöter, B.; Spiegel, M.: Studies on the nucleation and growth of oxide films. Gordon Research Conference – High Temperature Corrosion, New London, NH, USA (2005)
Park, E.; Hüning, B.; Borodin, S.; Rohwerder, M.; Spiegel, M.: Initial oxidation of Fe-Cr alloys: In situ STM amd ex-situ SEM studies. 6th International Conference on the Microscopy of Oxidation, Birmingham, UK (2005)
Cha, S. C.; Spiegel, M.: Local reactions of KCl particles with Fe, Ni and Cr surfaces. EFC Workshop: Novel approaches to the improvement of high temperature corrosion resistance, DECHEMA, Frankfurt, Germany (2004)
Sánchez Pastén, M.; Strauch, E.; Spiegel, M.: High temperature corrosion of metallic materials in simulated waste incineration conditions at 300-600 °C. EFC Workshop: Novel approaches to the improvement of high temperature corrosion resistance, DECHEMA, Frankfurt, Germany (2004)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…