Milenkovic, S.; Frommeyer, G.; Schneider, A.: Mechanical Behaviour of the NiAl-W Eutectic Alloys. EUROMAT 2007, European Congress and Exhibition an Advanced Materials and Processes, Nürnberg, Germany (2007)
Eleno, L. T. F.; Frisk, K.; Schneider, A.: Assessment of the Fe-Ni-Al system. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Krein, R.; Schneider, A.; Sauthoff, G.; Frommeyer, G.: Structure and properties of Fe3Al-based alloys with strengthening boride precipitates. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Milenković, S.; Palm, M.; Frommeyer, G.; Schneider, A.: Microstructure and mechanical properties of Fe–Al–Nb eutectic alloys. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Schneider, A.; Zhang, J.: Metal Dusting of iron aluminium alloys. 3rd Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann, Germany (2006)
Eleno, L. T. F.; Schneider, A.; Inden, G.: Experimental determination and thermodynamic modelling of Fe-based high-melting alloys. Calphad XXXIV, Maastricht / The Netherlands (2005)
Schneider, A.; Stallybrass, C.; Sauthoff, G.; Cerezo, A.; Smith, G. D. W.: Three-dimensional atom probe studies of phase transformations in Fe–Al–Ni–Cr alloys with B2-ordered NiAl precipitates. 49th International Field Emission Symposium (IFES 04), Graz, Austria (2004)
Hassel, A. W.; Schneider, A.: Preparation of Nanodiscelectrode Arrays through Directional Solidification. 7th International Conference on Nanostructured Materials, Wiesbaden, Deutschland (2004)
Schneider, A.; Zhang, J.; Inden, G.: Metal dusting of Fe3Al-based alloys. Annual Meeting 2003, Symposium: International Symposium on Intermetallics and Advanced Metallic Materials, San Diego, CA, USA (2003)
Grabke, H.-J.; Müller-Lorenz, E. M.; Schneider, A.: Carburization and metal dusting on iron. IRON STEEL INST JAPAN KEIDANREN KAIKAN, 9-4 OTEMACHI 1-CHOME CHIYODA-KU, Tokyo, 100, Japan (2001), S1-S8 pp.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…
Integrated Computational Materials Engineering (ICME) is one of the emerging hot topics in Computational Materials Simulation during the last years. It aims at the integration of simulation tools at different length scales and along the processing chain to predict and optimize final component properties.