von Pezold, J.; Udyansky, A.; Aydin, U.; Hickel, T.; Neugebauer, J.: Strain-Induced Metal-Hydrogen Interactions across the First Transition Series – An Ab Initio Study of Hydrogen Embrittlement. TMS 2011 Meeting, San Diego, CA, USA (2011)
Race, C. P.; von Pezold, J.; Neugebauer, J.: Grain Boundary Kinetics in Molecular Dynamics: The Effect of the Driving Force on Mobility and Migration Mechanisms. TMS 2011, San Diego, CA, USA (2011)
von Pezold, J.: Understanding embrittlement in metals: A multiscale study of the Hydrogen enhanced local plasticity (HELP) mechanism. Bereichsseminar Materialforschung, MPI für Plasmaforschung, Garching, Germany (2011)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Atomistic study of the Hydrogen enhanced local plasticity (HELP) mechanism. ADIS 2010, Mechanical Properties, Ringberg, Germany (2010)
Udyansky, A.; von Pezold, J.; Dick, A.; Neugebauer, J.: Atomistic study of martensite stability in dilute Fe-based solid solutions. PTM 2010 (Solid-Solid Phase Transformations in Inorganic Materials), Avignon, France (2010)
Udyansky, A.; von Pezold, J.; Dick, A.; Neugebauer, J.: Impurity ordering in iron: An ab initio based multi-scale approach. GraCoS Workshop (Carbon and Nitrogen in Steels: Measurement, Phase Transformations and Mechanical Properties), Rouen, France (2010)
von Pezold, J.; Aydin, U.; Hickel, T.; Neugebauer, J.: Strain-induced metal-hydrogen interactions across the 1st transition series: An ab initio study of hydrogen embrittlement. DPG Frühjahrstagung 2010, Regensburg, Germany (2010)
von Pezold, J.; Aydin, U.; Hickel, T.; Neugebauer, J.: Strain-induced metal-hydrogen interactions across the 1st transition series: An ab initio study of hydrogen embrittlement. APS March Meeting 2010, Portland, OR, USA (2010)
Udyansky, A.; von Pezold, J.; Neugebauer, J.: Multi-scale modeling of martensite formation in Fe-based solid solutions. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Embrittlement in metals: An atomistic study of the Hydrogen enhanced local plasticity (HELP) mechanism. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Computational study of interstitial ordering in bcc iron. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
von Pezold, J.; Aydin, U.; Neugebauer, J.: Strain-induced metal-hydrogen interactions across the first transition series - An ab initio study of hydrogen embrittlement. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Understanding embrittlement in metals: A multiscale study of the Hydrogen-enhanced local plasticity mechanism. Materials Research Society (MRS) Fall meeting, Boston, MA, USA (2009)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Influence of long-range C–C elastic interactions on the structural stability of dilute Fe–C solid solutions. EUROMAT 2009, Glasgow, UK (2009)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…
Integrated Computational Materials Engineering (ICME) is one of the emerging hot topics in Computational Materials Simulation during the last years. It aims at the integration of simulation tools at different length scales and along the processing chain to predict and optimize final component properties.
Data-rich experiments such as scanning transmission electron microscopy (STEM) provide large amounts of multi-dimensional raw data that encodes, via correlations or hierarchical patterns, much of the underlying materials physics. With modern instrumentation, data generation tends to be faster than human analysis, and the full information content is…
The project’s goal is to synergize experimental phase transformations dynamics, observed via scanning transmission electron microscopy, with phase-field models that will enable us to learn the continuum description of complex material systems directly from experiment.