Dutta, B.; Hickel, T.; Neugebauer, J.: Finite temperature excitation mechanisms and their coupling in magnetic shape memory alloys. The Materials Research Centre (MRC), Indian Institute of Science (IISc), Bangalore, India (2017)
Neugebauer, J.: From Semiconductors to High-Strength Steels and Back Again. 10 years of the Laboratory for Photovoltaics & Semiconductor Physics, Luxembourg, Luxembourg (2017)
Dutta, B.; Begum, V.; Hickel, T.; Neugebauer, J.: Impact of doping on the magnetic and structural transformations in magnetocaloric materials. DPG Spring Meeting of the Condensed Matter Section, Dresden, Germany (2017)
Dutta, B.; Hickel, T.; Neugebauer, J.: Ab initio modelling of phase diagrams in magnetic Heusler alloys: achievements and future challenges. SUSTech Global Scientists Forum, Shenzhen, China (2017)
Neugebauer, J.: Solvent-controlled single atom dissolution, surface alloying and Wulff shapes of nanoclusters; Electrocatalysis at electrocodes in the dry. Workshop: Research Area III, ZEMOS, Bochum, Germany (2016)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…