GUO, Y.-l.; Zhang, S.; He, J.; Lu, W.; Jia, L.-n.; Li, Z.; Zhang, H.: Transition from micro-rod to nano-lamella eutectics and its hardening effect in niobium/silicide in-situ composites. Transactions of Nonferrous Metals Society of China (English Edition) 33 (8), pp. 2406 - 2416 (2023)
Moravcik, I.; Zelený, M.; Dlouhý, A.; Hadraba, H.; Moravcikova-Gouvea, L.; Papež, P.; Fikar, O.; Dlouhy, I.; Raabe, D.; Li, Z.: Impact of interstitial elements on the stacking fault energy of an equiatomic CoCrNi medium entropy alloy: theory and experiments. Science and Technology of Advanced Materials 23 (1), pp. 376 - 392 (2022)
Guo, Y.; Jia, L.; He, J.; Zhang, S.; Li, Z.; Zhang, H.: Interplay between eutectic and dendritic growths dominated by Si content for Nb–Si–Ti alloys via rapid solidification. Journal of Manufacturing Science and Engineering, Transactions of the ASME 144 (6), 061007 (2022)
Peng, J.; Wang, R.; Zhu, M.; Li, Z.; Liu, H.; Mukherjee, A. K.; Hu, T.: 2430% Superplastic strain in a eutectic Au–Sn alloy with micrometer-sized grains maintained by spinodal-like decomposition. Acta Materialia 228, 117766 (2022)
Wang, D.; Lu, X.; Lin, M.; Wan, D.; Li, Z.; He, J.; Johnsen, R.: Understanding the hydrogen effect on pop-in behavior of an equiatomic high-entropy alloy during in-situ nanoindentation. Journal of Materials Science & Technology 98, pp. 118 - 122 (2022)
Wang, Z.; Lu, W.; Min Song, F. A.; Ponge, D.; Raabe, D.; Li, Z.; Li, Z.: High stress twinning in a compositionally complex steel of very high stacking fault energy. Nature Communications 13, 3598 (2022)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Atom probe tomography (APT) provides three dimensional(3D) chemical mapping of materials at sub nanometer spatial resolution. In this project, we develop machine-learning tools to facilitate the microstructure analysis of APT data sets in a well-controlled way.
Atom probe tomography (APT) is one of the MPIE’s key experiments for understanding the interplay of chemical composition in very complex microstructures down to the level of individual atoms. In APT, a needle-shaped specimen (tip diameter ≈100nm) is prepared from the material of interest and subjected to a high voltage. Additional voltage or laser…
Ever since the discovery of electricity, chemical reactions occurring at the interface between a solid electrode and an aqueous solution have aroused great scientific interest, not least by the opportunity to influence and control the reactions by applying a voltage across the interface. Our current textbook knowledge is mostly based on mesoscopic…
Integrated Computational Materials Engineering (ICME) is one of the emerging hot topics in Computational Materials Simulation during the last years. It aims at the integration of simulation tools at different length scales and along the processing chain to predict and optimize final component properties.