Löffler, F.; Sauthoff, G.; Palm, M.: Determination of phase equilibria in the Fe–Mg–Si system. International Journal of Materials Research 102 (8), pp. 1042 - 1047 (2011)
Rojas, D.; Prat, O.; Garcia, J.; Carrasco, C.; Sauthoff, G.; Kaysser-Pyzalla, A. R.: Design and Characterization of microstructure evolution during creep of 12%Cr heat resistant steels. Materials Science and Engineering A 527, pp. 3864 - 3876 (2010)
Eumann, M.; Sauthoff, G.; Palm, M.: Phase equilibria in the Fe–Al–Mo system - Part II: Isothermal sections at 1000 and 1150 °C. Intermetallics 16 (6), pp. 834 - 846 (2008)
Eumann, M.; Sauthoff, G.; Palm, M.: Phase equilibria in the Fe–Al–Mo system - Part I: Stability of the Laves phase Fe2Mo and isothermal section at 800 °C. Intermetallics 16 (5), pp. 706 - 716 (2008)
Isaac, A.; Sket, F.; Borbély, A.; Sauthoff, G.; Pyzalla, A. R.: Study of cavity evolution during creep by synchrotron microtomography using a volume correlation method. Praktische Metallographie/Practical Metllography 45 (5), pp. 242 - 245 (2008)
Isaac, A.; Sket, F.; Sauthoff, G.; Pyzalla, A.: In-situ 3D Quantification of the Evolution of Creep Cavity Size, Shape and Spatial Orientation using Synchrotron X-ray Tomography. Materials Science and Engineering A 478, pp. 108 - 118 (2008)
Eumann, M.; Sauthoff, G.; Palm, M.: Re-evaluation of phase equilibria in the Al–Mo system. International Journal of Materials Research 97 (11), pp. 1502 - 1511 (2006)
Stallybrass, C.; Schneider, A.; Sauthoff, G.: The strengthening effect of (Ni, Fe)Al precipitates on the mechanical properties at high temperatures of ferritic Fe–Al–Ni–Cr alloys. Intermetallics 13 (12), pp. 1263 - 1268 (2005)
Stein, F.; Palm, M.; Sauthoff, G.: Mechanical Properties and Oxidation Behaviour of Two-Phase Iron Aluminium Alloys with Zr(Fe,Al)2 Laves Phase or Zr(Fe,Al)12 τ1 Phase. Intermetallics 13 (12), pp. 1275 - 1285 (2005)
Stein, F.; Palm, M.; Sauthoff, G.: Structure and stability of Laves phases. Part II: Structure type variations in binary and ternary systems. Intermetallics 13 (10), pp. 1056 - 1074 (2005)
Wasilkowska, A.; Bartsch, M.; Stein, F.; Palm, M.; Sauthoff, G.; Messerschmidt, U.: Plastic deformation of Fe–Al polycrystals strengthened with Zr-containing Laves phases: Part II. Mechanical properties. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 381 (1-2), pp. 1 - 15 (2004)
Stein, F.; Palm, M.; Sauthoff, G.: Structure and stability of Laves phases. Part I - Critical assessment of factors controlling Laves phase stability. Intermetallics 12 (7-9), pp. 713 - 720 (2004)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
A novel design with independent tip and sample heating is developed to characterize materials at high temperatures. This design is realized by modifying a displacement controlled room temperature micro straining rig with addition of two miniature hot stages.
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.
Here, we aim to develop machine-learning enhanced atom probe tomography approaches to reveal chemical short/long-range order (S/LRO) in a series of metallic materials.