Grundmeier, G.; Fink, N.; Giza, M.; Popova, V.; Vlasak, R.; Wapner, K.: Application of combined spectroscopic, electrochemical and microscopic techniques for the understanding of adhesion and de-adhesion at polymer/metal interfaces. 24. Spektrometertagung, Dortmund, Germany (2005)
Grundmeier, G.; Wapner, K.: Anwendung einer neuen höhenregulierbaren Rasterkelvinsonde zur Untersuchung der Stabilität von Klebstoff-Metall-Grenzflächen in feuchten und korrosiven Atmosphären. Swissbonding, Rapperswil am Zürichsee, Switzerland (2005)
Grundmeier, G.; Wapner, K.; Schönberger, B.; Stratmann, M.: Fundamentals and Applications of a new height regulated Scanning Kelvin Probe in Corrosion and Adhesion Science. ISE 2004, Thessaloniki, Greece (2004)
Grundmeier, G.; Wapner, K.; Schönberger, B.; Stratmann, M.: Introduction of a height regulated Scanning Kelvin Probe for the simultaneous measurement of surface topography and interfacial electrode potentials in corrosive environments. ISE Conference, 55th Annual Meeting, Thessaloniki, Greece (2004)
Grundmeier, G.; Wapner, K.: Water diffusion measurements in a model adhesive/silicon lap joint using FTIR-spectroscopy: Differentiation between bulk and interfacial diffusion. Euradh 2004, Freiburg, Germany (2004)
Wapner, K.; Grundmeier, G.: Extended Abstract: Water diffusion measurements in a model adhesive/silicon lap joint using FTIR-spectroscopy: differentiation between bulk and interfacial diffusion. Euradh2004/Adhesion2004, Freiburg, Germany (2004)
Wapner, K.; Stratmann, M.; Grundmeier, G.: Extended Abstract: Non-destructive, in-situ measurement of de-adhesion processes at buried adhesive/metal interfaces by means of a new scanning Kelvin probe blister Test. Euradh2004/Adhesion2004, Freiburg, Germany (2004)
Grundmeier, G.; Wapner, K.; Stratmann, M.: Applications of a new height regulated Scanning Kelvin Probe for the study of polymer/metal interfaces in corrosive environments. ICEPAM 2004, Helsinki, Finnland (2004)
Grundmeier, G.; Wapner, K.; Schönberger, B.; Stratmann, M.: Non-destructive, real time in-situ measurement of de-adhesion processes at buried adhesive/metal interfaces by means of a new Scanning Kelvin Probe Blister Test. Annual Meeting of the American Adhesion Society, Wilmington, UK (2004)
Wapner, K.; Grundmeier, G.: Application of the Scanning Kelvin Probe for the study of de-adhesion processes at thin film engineered adhesive/metal interfaces. Annual Meeting of the American Adhesion Society, Wilmington, UK (2004)
Posner, R.; Wapner, K.; Stratmann, M.; Grundmeier, G.: Hydrated Ion Transport at Polymer/Oxide/Metal-Interfaces in Non-Corrosive Atmosphere: Influence of Electric Field Gradients. Gordon Conference Graduate Research Seminar on Aqueous Corrosion, Colby Sawyer College, New London, NH, USA (2008)
Klimow, G.; Wapner, K.; Grundmeier, G.: Applications of a Scanning Kelvin Probe for Studying Modified Adhesive/Metal Interfaces under Corrosive and Mechanical Load. 3rd World Congress on Adhesion and Related Phenomena, WCARP-III, Beijing, China (2006)
Wapner, K.; Stratmann, M.; Grundmeier, G.: Non-destructive, In-Situ Measurement of De-Adhesion Processes at Buried Adhesive/Metal Interfaces by Means of a New Scanning Kelvin Probe Blister Test. EUROMAT 2005, Prague, Czech Republic (2005)
Wapner, K.; Stratmann, M.; Grundmeier, G.: The application of the scanning Kelvin probe for investigating the deadhesion of adhesives on iron and zinc. EURADH 2002, Glasgow, UK (2002)
Wapner, K.: Grenzflächenchemische und elektrochemische Untersuchungen zur Haftung und Enthaftung an modifizierten Klebstoff/Metall-Grenzflächen. Dissertation, Ruhr-Universität Bochum, Fakultät für Chemie, Bochum, Germany (2006)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and…
The goal of this project is to develop an environmental chamber for mechanical testing setups, which will enable mechanical metrology of different microarchitectures such as micropillars and microlattices, as a function of temperature, humidity and gaseous environment.
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
The computational materials design department in collaboration with the Technical University Darmstadt and the Ruhr University Bochum developed a workflow to calculate phase diagrams from ab-initio. This achievement is based on the expertise in the ab-initio thermodynamics in combination with the recent advancements in machine-learned interatomic…
The project focuses on development and design of workflows, which enable advanced processing and analyses of various data obtained from different field ion emission microscope techniques such as field ion microscope (FIM), atom probe tomography (APT), electronic FIM (e-FIM) and time of flight enabled FIM (tof-FIM).
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.