Spiegel, M.: Salzschmelzenkorrosion an Überhitzern und Verdampfern. VDI Wissensforum: Beläge und Korrosion in Großfeuerungsanlagen, Hannover, Germany (2005)
Parezanovic, I.; Spiegel, M.: Selective Oxidation and Segregation during Annealing of Steels. 6th International Conference on the Microscopy of Oxidation, Birmingham, UK (2005)
Pöter, B.; Spiegel, M.: In-situ FE-SEM and EBSD investigation on the oxidation of pure iron. 6th International Conference on the Microscopy of Oxidation, Birmingham, UK (2005)
Spiegel, M.: Korrosionsprozesse an metallischen Stromsammlermaterialien in der Schmelzkarbonat-Brennstoffzelle (MCFC). 80. AGEF Seminar im Rahmen der InCom 2005, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (2005)
Ruh, A.; Spiegel, M.: Influence of gas phase composition on the kinetics of chloride melt induced corrosion. EFC Workshop: Novel approaches to the improvement of high temperature corrosion resistance, DECHEMA, Frankfurt, Germany (2004)
Skobir, D.; Spiegel, M.; Arvelakis, S.; Milewska, A.; Perez, F. J.: Deposit induced corrosion of CVD coatings, steels and model alloys in simulated biomass combustion atmospheres. EFC Workshop: Novel approaches to the improvement of high temperature corrosion resistance, DECHEMA, Frankfurt, Germany (2004)
Spiegel, M.: Fundamental aspects of fireside corrosion in waste and biomass fired plants. 6th Int. Symposium on High Temperature Corrosion and Protection of Materials, Lez Embiez, France (2004)
Parezanovic, I.; Spiegel, M.: Influence of B, S, P, Si and C segregation on the selective oxidation of dual phase and interstitial free steels. GALVATECH, Chicago, IL, USA (2004)
Cha, S. C.; Spiegel, M.: Studies on the local reactions of thermophoretic deposited alkali chloride particles on iron surfaces. NACE CORROSION‘ 04, New Orleans, LA, USA (2004)
Bernst, R.; Spiegel, M.; Schneider, A.: Metal dusting of iron aluminium alloys. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPIE Düsseldorf, Germany (2004)
Stratmann, M.; Hassel, A. W.; Spiegel, M.: Spektroskopische und reaktionskinetische Methoden zur Charakterisierung der Struktur, Eigenschaften und Stabilität von Metalloberflächen. 21. Vortrags- und Diskussionstagung Werkstoffprüfung 2003, Bad Neuenahr, Germany (2003)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
A high degree of configurational entropy is a key underlying assumption of many high entropy alloys (HEAs). However, for the vast majority of HEAs very little is known about the degree of short-range chemical order as well as potential decomposition. Recent studies for some prototypical face-centered cubic (fcc) HEAs such as CrCoNi showed that…
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
We simulate the ionization contrast in field ion microscopy arising from the electronic structure of the imaged surface. For this DFT calculations of the electrified surface are combined with the Tersoff-Hamann approximation to electron tunneling. The approach allows to explain the chemical contrast observed for NiRe alloys.
Decarbonisation of the steel production to a hydrogen-based metallurgy is one of the key steps towards a sustainable economy. While still at the beginning of this transformation process, with multiple possible processing routes on different technological readiness, we conduct research into the related fundamental scientific questions at the MPIE.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…