Spiegel, M.: Salzschmelzenkorrosion an Überhitzern und Verdampfern. VDI Wissensforum: Beläge und Korrosion in Großfeuerungsanlagen, Hannover, Germany (2005)
Parezanovic, I.; Spiegel, M.: Selective Oxidation and Segregation during Annealing of Steels. 6th International Conference on the Microscopy of Oxidation, Birmingham, UK (2005)
Pöter, B.; Spiegel, M.: In-situ FE-SEM and EBSD investigation on the oxidation of pure iron. 6th International Conference on the Microscopy of Oxidation, Birmingham, UK (2005)
Spiegel, M.: Korrosionsprozesse an metallischen Stromsammlermaterialien in der Schmelzkarbonat-Brennstoffzelle (MCFC). 80. AGEF Seminar im Rahmen der InCom 2005, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany (2005)
Ruh, A.; Spiegel, M.: Influence of gas phase composition on the kinetics of chloride melt induced corrosion. EFC Workshop: Novel approaches to the improvement of high temperature corrosion resistance, DECHEMA, Frankfurt, Germany (2004)
Skobir, D.; Spiegel, M.; Arvelakis, S.; Milewska, A.; Perez, F. J.: Deposit induced corrosion of CVD coatings, steels and model alloys in simulated biomass combustion atmospheres. EFC Workshop: Novel approaches to the improvement of high temperature corrosion resistance, DECHEMA, Frankfurt, Germany (2004)
Spiegel, M.: Fundamental aspects of fireside corrosion in waste and biomass fired plants. 6th Int. Symposium on High Temperature Corrosion and Protection of Materials, Lez Embiez, France (2004)
Parezanovic, I.; Spiegel, M.: Influence of B, S, P, Si and C segregation on the selective oxidation of dual phase and interstitial free steels. GALVATECH, Chicago, IL, USA (2004)
Cha, S. C.; Spiegel, M.: Studies on the local reactions of thermophoretic deposited alkali chloride particles on iron surfaces. NACE CORROSION‘ 04, New Orleans, LA, USA (2004)
Bernst, R.; Spiegel, M.; Schneider, A.: Metal dusting of iron aluminium alloys. Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, MPIE Düsseldorf, Germany (2004)
Stratmann, M.; Hassel, A. W.; Spiegel, M.: Spektroskopische und reaktionskinetische Methoden zur Charakterisierung der Struktur, Eigenschaften und Stabilität von Metalloberflächen. 21. Vortrags- und Diskussionstagung Werkstoffprüfung 2003, Bad Neuenahr, Germany (2003)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
A novel design with independent tip and sample heating is developed to characterize materials at high temperatures. This design is realized by modifying a displacement controlled room temperature micro straining rig with addition of two miniature hot stages.
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
While Density Functional Theory (DFT) is in principle exact, the exchange functional remains unknown, which limits the accuracy of DFT simulation. Still, in addition to the accuracy of the exchange functional, the quality of material properties calculated with DFT is also restricted by the choice of finite bases sets.
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.