Sauter, L. X.; Balk, T. J.; Dehm, G.; Nucci, J.; Arzt, E.: Hillock Formation and Thermal Stresses in Thin Au Films on Si Substrates. Materials Research Society Symposium Proceedings 875, O5.2, pp. 177 - 182 (2005)
Volkert, C. A.; Busch, S.; Heiland, B.; Dehm, G.: Transmission electron microscopy of fluorapatite-gelatine composite particles prepared using focused ion beam milling. Journal of Microscopy 214 (3), pp. 208 - 212 (2004)
Schmidt, T.; Balk, T. J.; Dehm, G.; Arzt, E.: Influence of tantalum and silver interlayers on thermal stress evolution in copper thin films on silicon substrates. Scripta Materialia 50 (6), pp. 733 - 737 (2004)
Inkson, B. J.; Dehm, G.; Wagner, T. A.: Thermal stability of Ti and Pt nanowires manufactured by Ga+ focused ion beam. Journal of Microscopy 214 (3), pp. 252 - 260 (2004)
Dehm, G.; Inkson, B. J.; Wagner, T. A.: Growth and microstructural stability of epitaxial Al films on (0001) α-Al2O3 substrates. Acta Materialia 50 (20), pp. 5021 - 5032 (2002)
Inkson, B. J.; Dehm, G.; Wagner, T. A.: In-situ TEM observation of dislocation motion in thermally strained Al nanowires. Acta Materialia 50 (20), pp. 5033 - 5047 (2002)
Beschliesser, M.; Chatterjee, A.; Lorich, A.; Knabl, W.; Kestler, H.; Dehm, G.; Clemens, H.: Designed fully lamellar microstructures in a γ-TiAl based alloy: adjustment and microstructural changes upon long-term isothermal exposure at 700 and 800 degrees C. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 329-331, pp. 124 - 129 (2002)
Dehm, G.; Balk, T. J.; von Blanckenhagen, B.; Gumbsch, P.; Arzt, E.: Dislocation dynamics in sub-micron confinement: recent progress in Cu thin film plasticity. Zeitschrift für Metallkunde/Materials Research and Advanced Techniques 93 (5), pp. 383 - 391 (2002)
Schillinger, W.; Clemens, H.; Dehm, G.; Bartels, A.: Microstructural stability and creep behavior of a lamellar γ-TiAl based alloy with extremely fine lamellar spacing. Intermetallics 10 (5), pp. 459 - 466 (2002)
Bartels, A.; Clemens, H.; Dehm, G.; Lach, E.; Schillinger, W.: Strain rate dependence of the deformation mechanisms in a fully lamellar γ-TiAl-based alloy. Zeitschrift für Metallkunde/Materials Research and Advanced Techniques 93 (3), pp. 180 - 185 (2002)
Dehm, G.; Wagner, T. A.; Balk, T. J.; Arzt, E.; Inkson, B. J.: Plasticity and interfacial dislocation mechanisms in epitaxial and polycrystalline Al films constrained by substrates. Journal of Materials Science & Technology 18 (2), pp. 113 - 117 (2002)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…