Hassel, W.; Tan, K. S.; Stratmann, M.: Examination of particle-surface contact under tribo-corrosion conditions with a novel low force micro indenter. 55th Meeting of the International Society of Electrochemistry, Thessaloniki, Greece (2004)
Lill, K. A.; Stratmann, M.; Frommeyer, G.; Hassel, A. W.: On the corrosion resistance of a new class of FeCrAl light weight ferritic steels. 55th Meeting of the International Society of Electrochemistry, Thessaloniki, Greece (2004)
Wicinski, M.; Hassel, A. W.; Stratmann, M.: Corrosion under Cyclic Conditions Monitored by a Simultaneous Scanning Kelvin Probe and Galvanic Current Measurement. 55rd Meeting of the International Society of Electrochemistry, Thessaloniki, Greece (2004)
Wapner, K.; Stratmann, M.; Grundmeier, G.: Extended Abstract: Non-destructive, in-situ measurement of de-adhesion processes at buried adhesive/metal interfaces by means of a new scanning Kelvin probe blister Test. Euradh2004/Adhesion2004, Freiburg, Germany (2004)
Rohwerder, M.; Hausbrand, R.; Stratmann, M.: The role of the electrode potential at the buried polymer/metal interface on electrochemically driven delamination: The case MgZn2. ISE Annual Meeting, Thessaloniki, Greece (2004)
Stratmann, M.: Tailored semiconducting oxides for improved corrosion resistance and adhesion of organic coatings. Gordon Research Conference on Aqueous Corrosion, New London, NH, USA (2004)
Grundmeier, G.; Wapner, K.; Stratmann, M.: Applications of a new height regulated Scanning Kelvin Probe for the study of polymer/metal interfaces in corrosive environments. ICEPAM 2004, Helsinki, Finnland (2004)
Rohwerder, M.; Stratmann, M.: The effect of Oxygen Reduction on the Self-Assembly and Stability of Thiol Monolayer Films. 205th Meeting of the ECS, San Antonio, TX, USA (2004)
Frenznick, S.; Stratmann, M.; Rohwerder, M.: Galvanizing of Defined Model Samples: On the Road to a Fundamental Physical Understanding of Hot-Dip Galvanizing. GALVATECH, Chicago, USA (2004)
Rohwerder, M.; Hausbrand, R.; Stratmann, M.: Development of Zinc-Alloy Coatings with Inherent Delamination Stability for Organic Coatings. Galvatech '04, Chicago, IL, USA (2004)
Stratmann, M.: Moderne Schutzschichtsysteme auf der Basis molekularer Grenzflächenkonzepte. 25. Sitzung, Nordrhein-Westfälische Akademie der Wissenschaften, Düsseldorf, Germany (2004)
Stratmann, M.: Moderne Schutzschichtsysteme auf der Basis molekularer Grenzflächenkonzepte. 25. Sitzung, Nordrhein-Westfälische Akademie der Wissenschaften, Düsseldorf, Germany (2004)
Grundmeier, G.; Wapner, K.; Schönberger, B.; Stratmann, M.: Non-destructive, real time in-situ measurement of de-adhesion processes at buried adhesive/metal interfaces by means of a new Scanning Kelvin Probe Blister Test. Annual Meeting of the American Adhesion Society, Wilmington, UK (2004)
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.