Inkson, B. J.; Dehm, G.; Peng, Y.: Dynamical growth of Cu-Pt nanowires with a nanonecklace morphology. Nanotechnology 18 (41), 415601, pp. 1 - 5 (2007)
Oh, S. H.; Legros, M.; Kiener, D.; Gruber, P. A.; Dehm, G.: In situ TEM straining of single crystal Au films on polyimide: Change of deformation mechanisms at the nanoscale. Acta Materialia 55 (16), pp. 5558 - 5571 (2007)
Kiener, D.; Motz, C.; Rester, M.; Jenko, M.; Dehm, G.: FIB damage of Cu and possible consequences for miniaturized mechanical tests. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 459 (1-2), pp. 262 - 272 (2007)
Kiener, D.; Motz, C.; Schöberl, T.; Jenko, M.; Dehm, G.: Determination of mechanical properties of copper at the micron scale. Advanced Engineering Materials 8 (11), pp. 1119 - 1125 (2006)
Riethmüller, J.; Dehm, G.; Affeldt, E. E.; Arzt, E.: Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings. International Journal of Materials Research 97 (6), pp. 689 - 698 (2006)
Wetscher, F.; Pippan, R.; Šturm, S.; Kauffmann, F.; Scheu, C.; Dehm, G.: TEM investigation of the structural evolution in a pearlitic steel deformed by high pressure torsion. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 37 (6), pp. 1963 - 1968 (2006)
Kauffmann, F.; Ji, B.; Dehm, G.; Gao, H.; Arzt, E.: A quantitative study of the hardness in a superhard nanocrystalline titanium nitride/silicon nitride coating. Scripta Materialia 52 (12), pp. 1269 - 1274 (2005)
Dehm, G.; Edongué, H.; Wagner, T. A.; Oh, S. H.; Arzt, E.: Obtaining different orientation relationships for Cu films grown on (0001) α-Al2O3 substrates by magnetron sputtering. Zeitschrift für Metallkunde 96 (3), pp. 249 - 254 (2005)
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
We have studied a nanocrystalline AlCrCuFeNiZn high-entropy alloy synthesized by ball milling followed by hot compaction at 600°C for 15 min at 650 MPa. X-ray diffraction reveals that the mechanically alloyed powder consists of a solid-solution body-centered cubic (bcc) matrix containing 12 vol.% face-centered cubic (fcc) phase. After hot compaction, it consists of 60 vol.% bcc and 40 vol.% fcc. Composition analysis by atom probe tomography shows that the material is not a homogeneous fcc–bcc solid solution
Magnetic properties of magnetocaloric materials is of utmost importance for their functional applications. In this project, we study the magnetic properties of different materials with the final goal to discover new magnetocaloric materials more suited for practical applications.
In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
In this project we pursue recent developments in the field of austenitic steels with up to 18% reduced mass density. The alloys are based on the Fe-Mn-Al-C system.
Local lattice distortion is one of the core effects in complex concentrated alloys (CCAs). It has been expected that the strength CCAs can be improved by inducing larger local lattice distortions. In collaboration with experimentalists, we demonstrated that VCoNi has larger local lattice distortions and indeed has much better strength than the…
In this project, we work on the use of a combinatorial experimental approach to design advanced multicomponent multi-functional alloys with rapid alloy prototyping. We use rapid alloy prototyping to investigate five multicomponent Invar alloys with 5 at.% addition of Al, Cr, Cu, Mn and Si to a super Invar alloy (Fe63Ni32Co5; at.%), respectively…