Shi, H.; Hachet, G.; Cheng, H.; Prithiv, T. S.; Ponge, D.; Sun, B.: Improving hydrogen embrittlement resistance of martensitic steel via interface B segregation. International Journal of Hydrogen Energy 164, 150954 (2025)
Srinivas Varanasi, R.; Waseda, O.; Syed, F. W.; Prithiv, T. S.; Gault, B.; Neugebauer, J.; Ponge, D.: Temperature and misorientation-dependent austenite nucleation at ferrite grain boundaries in a medium manganese steel: role of misorientation-dependent grain boundary segregation. Acta Materialia 296, 121242 (2025)
Bhattacharya, A.; Barik, R. K.; Nandy, S.; Sen, M.; Prithiv, T. S.; Patra, S.; Mitra, R.; Chakrabarti, D.; Ghosh, A.: Effect of martensite twins on local scale cleavage crack propagation in a medium carbon armor grade steel. Materialia 30, 101800 (2023)
Sukumar Prithiv, T.; Gault, B.; Li, Y.; Andersen, D.; Valle, N.; Eswara, S.; Ponge, D.; Raabe, D.: Austenite grain boundary segregation and precipitation of boron in low-C steels and their role on the heterogeneous nucleation of ferrite. Acta Materialia 252, 118947 (2023)
Prithiv, T. S.; Thirumurugan, G.; Madan, M.; Kamaraj, A.: Thermodynamic Assessment of Steelmaking Practices for the Production of Re-sulfur Steels. Transactions of the Indian Institute of Metals 73 (6), pp. 1595 - 1603 (2020)
Srikakulapu, K.; Morsdorf, L.; Tung, P.-Y.; Prithiv, T. S.; Herbig, M.: Cementite decomposition in 100Cr6 bearing steel during high-pressure torsion: Influence of precipitate composition, size, morphology and matrix hardness. European Congress and Exhibition on Advanced Materials and Processes, EUROMAT 2021, online (2021)
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.