Pradeep, K. G.; Herzer, G.; Raabe, D.: Atomic scale study of CU clustering and pseudo-homogeneous Fe-Si nanocrystallization in soft magnetic FeSiNbB(CU) alloys. Ultramicroscopy 159 (2), pp. 285 - 291 (2015)
Stoffers, A.; Cojocaru-Mirédin, O.; Seifert, W.; Zaefferer, S.; Riepe, S.; Raabe, D.: Grain boundary segregation in multicrystalline silicon: correlative characterization by EBSD, EBIC, and atom probe tomography. Progress in Photovoltaics: Research and Applications 23 (12), pp. 1742 - 1753 (2015)
Pradeep, K. G.; Tasan, C. C.; Yao, M.; Deng, Y.; Springer, H.; Raabe, D.: Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 648, pp. 183 - 192 (2015)
Ma, D.; Grabowski, B.; Körmann, F.; Neugebauer, J.; Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Materialia 100, pp. 90 - 97 (2015)
Pierce, D. T.; Jiménez, J. A.; Bentley, J.; Raabe, D.; Wittig, J. E.: The influence of stacking fault energy on the microstructural and strainhardening evolution of Fe–Mn–Al–Si steels during tensile deformation. Acta Materialia 100, pp. 178 - 190 (2015)
Wen, Y.; Xiao, H.; Peng, H.; Li, N.; Raabe, D.: Relationship Between Damping Capacity and Variations of Vacancies Concentration and Segregation of Carbon Atom in an Fe–Mn Alloy. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 46A (11), pp. 4828 - 4833 (2015)
Konijnenberg, P. J.; Zaefferer, S.; Raabe, D.: Assessment of geometrically necessary dislocation levels derived by 3D EBSD. Acta Materialia 99, pp. 402 - 414 (2015)
Choi, W. S.; De Cooman, B. C.; Sandlöbes, S.; Raabe, D.: Size and orientation effects in partial dislocation-mediated deformation of twinning-induced plasticity steel micro-pillars. Acta Materialia 98, 12304, pp. 391 - 404 (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…