Tehranchi, A.; Zhou, X.; Curtin, W. A.: A decohesion pathway for hydrogen embrittlement in nickel: Mechanism and quantitative prediction. Acta Materialia 185, pp. 98 - 109 (2020)
Tehranchi, A.; Curtin, W. A.: The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals. Engineering Fracture Mechanics 216, 106502 (2019)
Leyson, G.; Curtin, W. A.: Solute strengthening at high temperatures. Modelling and Simulation in Materials Science and Engineering 24 (6), 065005 (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.