Aguirre, J.; Walczak, M.; Rohwerder, M.: The mechanism of erosion-corrosion of API X65 steel under turbulent slurry flow: Effect of nominal flow velocity and oxygen content. WEAR 438-439, 203053 (2019)
Urriola, P. V.; Walczak, M.; Rohwerder, M.: Theoretical Efficiency of Metallic Dispersion Coatings for Corrosion Protection at the Cut-Edge. Journal of the Electrochemical Society 160 (8), pp. C305 - C315 (2013)
Stempniewicz, M.; Rohwerder, M.; Marlow, F.: Release of Guest Molecules from Modified Mesoporous Silica. 5th International Mesostructured Materials Symposium, IMMS2006, Shanghai, China, August 05, 2006 - August 07, 2006. (2006)
Stempniewicz, M.; Rohwerder, M.; Marlow, F.: Release of guest molecules from modified mesoporous silica. 5th International Mesostructured Materials Symposium, Shanghai, China (2006)
Stempniewicz, M.; Rohwerder, M.; Marlow, F.: Release of dye molecules from mesostructured microparticles. 104th Bunsentagung, Frankfurt a. M., Germany (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…