Pfanner, G.; Freysoldt, C.; Neugebauer, J.: EPR parameters of the dangling bond defect in crystalline and amorphous silion: A DFT-study. DPG spring meeting 2011, Dresden, Germany (2011)
Freysoldt, C.: Fully ab initio finite-size corrections for electrostatic artifacts in charged-defect supercell calculations. Psi-k Conference 2010, Berlin, Germany (2010)
Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G.: Charged defects in the supercell approach. Seminar at Duisburg University, Duisburg, Germany (2010)
Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G.: Charged defects in the supercell approach. Seminar at Fritz-Haber-Institut der MPG, Berlin, Germany (2010)
Freysoldt, C.; Neugebauer, J.: Fully ab initio finite size corrections for charged defects in the supercell approach. APS march meeting, Portland, OR, USA (2010)
Mitra, C.; Freysoldt, C.; Neugebauer, J.: Band alignment in the framework of GW theory. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: Ab initio investigations of the silicon dangling bond. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Freysoldt, C.; Neugebauer, J.: Theory of defect distribution at semiconductor interfaces based on ab-initio thermodynamics. MRS Fall Meeting, Boston, MA, USA (2009)
Freysoldt, C.; Neugebauer, J.: Calculation of defect distribution at interfaces from ab-initio-based thermodynamic data. MRS Fall Meeting, Boston, MA, USA (2009)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Highly p-doped GaN:Mg! What hinders the thermal drive-out of hydrogen? 2. Klausurtagung des Graduierten Kollegs: Mikro und Nanostrukturen in der Optoelektronik, Bad Karlshafen, Germany (2009)
Freysoldt, C.; Pfanner, G.; Neugebauer, J.: What can EPR hyperfine parameters tell about the Si dangling bond? - A theoretical study. International conference on amorphous and nanoporous semiconductors (ICANS) 23, Utrecht, Netherlands (2009)
Freysoldt, C.; Neugebauer, J.; Van de Walle, C. G.: Fully ab initio supercell corrections for charged defects. CECAM workshop "Which Electronic Structure Method for the Study of Defects?", Lausanne, Switzerland (2009)
Freysoldt, C.; Pfanner, G.; Neugebauer, J.: What can EPR hyperfine parameters tell about the Si dangling bond? - A theoretical viewpoint. 1st International Workshop on the Staebler-Wronski effect, Berlin, Germany (2009)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Role of the parasitic Mg3N2 phase in post-growth activation of p-doped Mg:GaN. DPG Frühjahrstagung, TU Dresden, Germany (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.