Saksena, A.; Sun, B.; Dong, X.; Khanchandani, H.; Ponge, D.; Gault, B.: Optimizing site-specific specimen preparation for atom probe tomography by using hydrogen for visualizing radiation-induced damage. International Journal of Hydrogen Energy 50 (Part A), pp. 165 - 174 (2024)
Jacob, K.; Khanchandani, H.; Dixit, S.; Jaya, B. N.: Suppression of Reverted Austenite in Cold-Rolled Maraging Steels and Its Impact on Mechanical Properties. Metallurgical and Materials Transactions A 54 (12), pp. 4976 - 4993 (2023)
Khanchandani, H.; Gault, B.: Atomic scale understanding of the role of hydrogen and oxygen segregation in the embrittlement of grain boundaries in a twinning induced plasticity steel. Scripta Materialia 234, 115593 (2023)
Khanchandani, H.; Stephenson, L.; Raabe, D.; Zaefferer, S.; Gault, B.: Hydrogen/Deuterium Charging Methods for the Investigation of Site-Specific Microstructural Features by Atom Probe Tomography. Microscopy and Microanalysis 28 (S1), p. 1664 (2022)
El-Zoka, A.; Kim, S.-H.; Khanchandani, H.; Stephenson, L.; Gault, B.: Advances in Cryo-Atom Probe Tomography Studies on Formation of Nanoporous Metals by Dealloying (Digital Presentation). In ECS Meeting Abstracts, MA2022-01 (47), p. 1983. The Electrochemical Society (2022)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The project’s goal is to synergize experimental phase transformations dynamics, observed via scanning transmission electron microscopy, with phase-field models that will enable us to learn the continuum description of complex material systems directly from experiment.