Grote, J.-P.; Žeradjanin, A. R.; Cherevko, S.; Mayrhofer, K. J. J.: Electrochemical CO2 reduction: A Combinatorial High-Throughput Approach for Catalytic Activity, Stability, and Selectivity Investigations. Electrochemistry 2014, Mainz, Germany (2014)
Grote, J.-P.; Žeradjanin, A. R.; Cherevko, S.; Mayrhofer, K. J. J.: Electrochemical CO2 reduction: A Combinatorial High-Throughput Approach for Catalytic Activity, Stability, and Selectivity Investigations. 247th ACS National Meeting, Dallas, TX, USA (2014)
Cherevko, S.; Topalov, A. A.; Žeradjanin, A. R.; Mayrhofer, K. J. J.: Coupling of electrochemistry and inductively plasma - Mass spectroscopy: Investigation of the noble metals corrosion. 59th International Conference on Analytical Sciences and Spectroscopy(ICASS)
, Mont-Tremblant, Canada (2013)
Žeradjanin, A. R.: Impact of the spatial distribution of morphological patterns on the efficiency of electrocatalytic gas evolving reactions. Seminar at Serbian Chemical Society, Belgrade, Serbia (2013)
Topalov, A. A.; Cherevko, S.; Žeradjanin, A. R.; Mayrhofer, K. J. J.: Stability of Electrocatalyst Materials – A Limiting Factor for the Deployment of Electrochemical Energy Conversion? Third Russian-German Seminar on Catalysis “Bridging the Gap between Model and Real Catalysis. Energy-Related Catalysis”, Burduguz, Lake Baikal, Russia (2013)
Grote, J.-P.; Žeradjanin, A. R.; Cherevko, S.; Mayrhofer, K. J. J.: Electrochemical CO2 Reduction A Combinatorial High-Throughput Approach for Catalytic Activity, Stability and Selectivity Investigations. International Symposium on Electrocatalysis: Explorations of the Volcano Landscape, Whistler, BC, Canada (2014)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Electron microscopes offer unique capabilities to probe materials with extremely high spatial resolution. Recent advancements in in situ platforms and electron detectors have opened novel pathways to explore local properties and the dynamic behaviour of materials.