Grundmeier, G.; Fink, N.; Giza, M.; Popova, V.; Vlasak, R.; Wapner, K.: Application of combined spectroscopic, electrochemical and microscopic techniques for the understanding of adhesion and de-adhesion at polymer/metal interfaces. 24. Spektrometertagung, Dortmund, Germany (2005)
Grundmeier, G.; Wapner, K.: Anwendung einer neuen höhenregulierbaren Rasterkelvinsonde zur Untersuchung der Stabilität von Klebstoff-Metall-Grenzflächen in feuchten und korrosiven Atmosphären. Swissbonding, Rapperswil am Zürichsee, Switzerland (2005)
Grundmeier, G.; Wapner, K.; Schönberger, B.; Stratmann, M.: Fundamentals and Applications of a new height regulated Scanning Kelvin Probe in Corrosion and Adhesion Science. ISE 2004, Thessaloniki, Greece (2004)
Grundmeier, G.; Wapner, K.; Schönberger, B.; Stratmann, M.: Introduction of a height regulated Scanning Kelvin Probe for the simultaneous measurement of surface topography and interfacial electrode potentials in corrosive environments. ISE Conference, 55th Annual Meeting, Thessaloniki, Greece (2004)
Grundmeier, G.; Wapner, K.: Water diffusion measurements in a model adhesive/silicon lap joint using FTIR-spectroscopy: Differentiation between bulk and interfacial diffusion. Euradh 2004, Freiburg, Germany (2004)
Wapner, K.; Grundmeier, G.: Extended Abstract: Water diffusion measurements in a model adhesive/silicon lap joint using FTIR-spectroscopy: differentiation between bulk and interfacial diffusion. Euradh2004/Adhesion2004, Freiburg, Germany (2004)
Wapner, K.; Stratmann, M.; Grundmeier, G.: Extended Abstract: Non-destructive, in-situ measurement of de-adhesion processes at buried adhesive/metal interfaces by means of a new scanning Kelvin probe blister Test. Euradh2004/Adhesion2004, Freiburg, Germany (2004)
Grundmeier, G.; Wapner, K.; Stratmann, M.: Applications of a new height regulated Scanning Kelvin Probe for the study of polymer/metal interfaces in corrosive environments. ICEPAM 2004, Helsinki, Finnland (2004)
Grundmeier, G.; Wapner, K.; Schönberger, B.; Stratmann, M.: Non-destructive, real time in-situ measurement of de-adhesion processes at buried adhesive/metal interfaces by means of a new Scanning Kelvin Probe Blister Test. Annual Meeting of the American Adhesion Society, Wilmington, UK (2004)
Wapner, K.; Grundmeier, G.: Application of the Scanning Kelvin Probe for the study of de-adhesion processes at thin film engineered adhesive/metal interfaces. Annual Meeting of the American Adhesion Society, Wilmington, UK (2004)
Posner, R.; Wapner, K.; Stratmann, M.; Grundmeier, G.: Hydrated Ion Transport at Polymer/Oxide/Metal-Interfaces in Non-Corrosive Atmosphere: Influence of Electric Field Gradients. Gordon Conference Graduate Research Seminar on Aqueous Corrosion, Colby Sawyer College, New London, NH, USA (2008)
Klimow, G.; Wapner, K.; Grundmeier, G.: Applications of a Scanning Kelvin Probe for Studying Modified Adhesive/Metal Interfaces under Corrosive and Mechanical Load. 3rd World Congress on Adhesion and Related Phenomena, WCARP-III, Beijing, China (2006)
Wapner, K.; Stratmann, M.; Grundmeier, G.: Non-destructive, In-Situ Measurement of De-Adhesion Processes at Buried Adhesive/Metal Interfaces by Means of a New Scanning Kelvin Probe Blister Test. EUROMAT 2005, Prague, Czech Republic (2005)
Wapner, K.; Stratmann, M.; Grundmeier, G.: The application of the scanning Kelvin probe for investigating the deadhesion of adhesives on iron and zinc. EURADH 2002, Glasgow, UK (2002)
Wapner, K.: Grenzflächenchemische und elektrochemische Untersuchungen zur Haftung und Enthaftung an modifizierten Klebstoff/Metall-Grenzflächen. Dissertation, Ruhr-Universität Bochum, Fakultät für Chemie, Bochum, Germany (2006)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Recent developments in experimental techniques and computer simulations provided the basis to achieve many of the breakthroughs in understanding materials down to the atomic scale. While extremely powerful, these techniques produce more and more complex data, forcing all departments to develop advanced data management and analysis tools as well as…
Integrated Computational Materials Engineering (ICME) is one of the emerging hot topics in Computational Materials Simulation during the last years. It aims at the integration of simulation tools at different length scales and along the processing chain to predict and optimize final component properties.
Data-rich experiments such as scanning transmission electron microscopy (STEM) provide large amounts of multi-dimensional raw data that encodes, via correlations or hierarchical patterns, much of the underlying materials physics. With modern instrumentation, data generation tends to be faster than human analysis, and the full information content is…
The project’s goal is to synergize experimental phase transformations dynamics, observed via scanning transmission electron microscopy, with phase-field models that will enable us to learn the continuum description of complex material systems directly from experiment.
In order to prepare raw data from scanning transmission electron microscopy for analysis, pattern detection algorithms are developed that allow to identify automatically higher-order feature such as crystalline grains, lattice defects, etc. from atomically resolved measurements.