Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Materials Science and Engineering A 387–389, pp. 950 - 954 (2004)
Ma, A.; Roters, F.; Raabe, D.: Numerical study of textures and Lankford values for FCC polycrystals by use of a modified Taylor model. Computational Materials Science 29, 3, pp. 259 - 395 (2004)
Raabe, D.: Overview on the Lattice Boltzmann Method for Nano- and Microscale Fluid Dynamics in Materials Science and Engineering. Modelling and Simulation in Materials Science and Engineering 12, pp. R13 - R46 (2004)
Raabe, D.; Ge, J.: Experimental study on the thermal stability of Cr filaments in a Cu–Cr–Ag in situ composite. Scripta Materialia 51, pp. 915 - 920 (2004)
Raabe, D.; Roters, F.: Using texture components in crystal plasticity finite element simulations. International Journal of Plasticity 20, pp. 339 - 361 (2004)
Sandim, H. R. Z.; Sandim, M. J. R.; Bernardi, H. H.; Lins, J. F. C.; Raabe, D.: Annealing effects on the microstructure and texture of a multifilamentary Cu–Nb composite wire. Scripta Materialia 51, pp. 1099 - 1104 (2004)
Lima, E. B. F.; Pyzalla, A. R.; Reimers, W.; Kuo, J.-C.; Raabe, D.: Mosaic Size Distributions in an Aluminum Bi-crystal Deformed by Channel Die Plane Strain Compression. Journal of Neutron Research 11 (4), pp. 209 - 214 (2003)
Zaefferer, S.; Kuo, J. C.; Zhao, Z.; Winning, M.; Raabe, D.: On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Materialia 51, pp. 4719 - 4735 (2003)
Raabe, D.: Don’t trust your simulation - Computational materials science on its way to maturity? Advanced Engineering Materials 4 (5), pp. 255 - 267 (2002)
Raabe, D.; Zhao, Z.; Park, S. J.; Roters, F.: Theory of orientation gradients in plastically strained crystals. Acta Materialia 50 (2), pp. 421 - 440 (2002)
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…