Winning, M.; Khorashadizadeh, A.; Raabe, D.; Zaefferer, S.: Recrystallization and grain growth in ultra fine grained materials produced by high pressure torsion. Recrystallization & Grain Growth 4 RX&GG, Sheffield, UK (2010)
Dmitrieva, O.; Dondl, P. W.; Müller, S.; Svirina, J. V.; Raabe, D.: Microstructural analysis of the deformation laminates in single crystals: Experiments and theory. European Congress on Computational Mechanics ECCM 2010, Paris, France (2010)
Eisenlohr, P.; Kords, C.; Roters, F.; Raabe, D.: A non-local constitutitve hardening model based on polar dislocation densities. IV European Conf. Comp. Mech. ECCM 2010, Paris, France (2010)
Zambaldi, C.; Raabe, D.; Roters, F.: Quantifying the plastic anisotropy of gamma-TiAl by axisymmetric indentation. International TiAl Workshop, Birmingham, UK (2010)
Krüger, T.: Simulation of a dense suspension of red blood cells. TU Braunschweig, Institut für rechnergestützte Modellierung im Bauingenieurwesen, Braunschweig, Germany (2010)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Raabe, D.: Atomic-scale distribution of impurities in CuInSe2-based thin-film solar cells. 15th GLADD meeting 2010, Delft, The Netherlands (2010)
Roters, F.; Tjahjanto, D. D.; Eisenlohr, P.; Raabe, D.: Homogenisierung von Mehrphasenwerkstoffen zur Simulation von Umformprozessen. 13. Workshop Simulation in der Umformtechnik, Modellierung von Verfestigungsmechanismen in der Blechumformung, Institut für Umformtechnik, Universität Stuttgart, Germany (2010)
Friák, M.; Counts, W. A.; Raabe, D.; Neugebauer, J.: Fundamental Materials-Design Limits in Ultra Light-Weight Mg-Li Alloys Determined from Quantum-Mechanical Calculations. 139th Annual Meeting of the Minerals, Metals and Materials Society (TMS), Seattle, WA, USA (2010)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Kinetic Monte Carlo simulations and ab initio studies of nano-precipitation in ferritic steels. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Dmitrieva, O.; Dondl, P. W.; Müller, S.; Svirina, J. V.; Raabe, D.: Orientation patterning in copper single crystals: Experimental observation and laminate analysis in dislocation dynamics. 9th GAMM Seminar on Microstructures 2010, University of Stuttgart, Germany (2010)
Eisenlohr, P.; Kords, C.; Roters, F.; Raabe, D.: A non-local crystal plasticity model based on polar dislocation densities. 16th Int. Symp. on Plasticity and Its Current Applications, St. Kitts, St. Federation of Saint Kitts and Nevis (2010)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Liu, T.; Raabe, D.: Characterization of CuInSe2 and Cu(In,Ga)Se2 thin-film solar cells using Atom Probe Tomography. Zentrum für Sonnenenergie und Wasserstoffforschung (ZSW), Stuttgart, Germany (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Grain boundaries (GBs) affect many macroscopic properties of materials. In the case of metals grain growth, Hall–Petch hardening, diffusion, and electrical conductivity, for example, are influenced or caused by GBs. The goal of this project is to investigate the different GB phases (also called complexions) that can occur in tilt boundaries of fcc…
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…