Sözen, H. I.; Hickel, T.; Neugebauer, J.: Impact of magnetism on the phase stability of rare-earth based hard magnetic materials. Calphad 68, 101731 (2020)
Hickel, T.; Neugebauer, J.; McEniry, E.: Ab initio simulation of hydrogen-induced decohesion in cementite-containing microstructures. Acta Materialia 150, pp. 53 - 58 (2018)
Dutta, B.; Körmann, F.; Hickel, T.; Neugebauer, J.: Impact of Co and Fe doping on the martensitic transformation and the magnetic properties in Ni–Mn-based Heusler alloys. Physica Status Solidi B, 1700455 , pp. 1 - 7 (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…