Zaefferer, S.: 3D orientation microscopy in a FIB-SEM: A new dimension of microstructure characterisation. Presentation at the scientific advisory board MPI Eisenforschung, MPI Eisenforschung GmbH, Düsseldorf, Germany (2007)
Bastos, A.; Zaefferer, S.; Raabe, D.: 3D EBSD Characterization of a Nanocrystalline NiCo Alloy by use of a High-resolution Field Emission SEM-EBSD Coupled with Serial Sectioning in a Focused Ion Beam Microscope (FIB). MRS Fall Conference, Boston, MA, USA (2006)
Kobayashi, S.; Zaefferer, S.: Determination of Phase Equilibria in the Fe3Al–Cr–Mo–C Semi-quaternary System Using a New Diffusion-multiple Technique. 12th International IUPAC Conference on High Temperature Materials Chemistry, Vienna, Austria (2006)
Zaefferer, S.; Sato, H.: Investigation of the formation mechanism of martensite plates in Fe-30%Ni by a high resolution orientation microscopy in SEM. ESOMAT 2006, Bochum (2006)
Kobayashi, S.; Zaefferer, S.; Raabe, D.: Relative Importance of Nucleation vs. Growth for Recrystallisation of Particle-containing Fe3Al Alloys. Fundamentals of Deformation and Annealing Symposium, Manchester, UK (2006)
Zaefferer, S.: High resolution orientation microscopy in 2 and 3 dimensions to study microstructure formation processes. 2. Warmumformtag (2.WUT), Düsseldorf (2006)
Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.; Zaefferer, S.; Zambaldi, C.: 3D EBSD characterization and crystal plasticity FE simulation of the texture and microstructure below a nanoindent in Cu. Plasticity Conference 2006, Halifax, Canada (2006)
Kobayashi, S.; Zaefferer, S.: Microstructure Control Using Phase Transformations in Ternary Gamma TiAl Alloys. Seminar talk, Universität Kassel, Kassel Germany (2006)
Zaefferer, S.: 3D-orientation microscopy in a FIB-SEM: A new dimension of microstructure characterization. 13th Conference on Electron Backscatter Diffraction, Oxford, UK (2006)
Bastos, A.; Zaefferer, S.; Raabe, D.: Orientation microscopy on electrodeposited samples. 13th Conference and Workshop on Electron Backscatter Diffraction, Oxford, UK (2006)
Bastos, A.; Zaefferer, S.; Raabe, D.: Characterization of microstructure and Texture of nanostructure electrodeposited NiCo samples by use of Electron Backscatter Diffraction (EBSD). DPG – Spring meeting, Dresden, Germany (2006)
Kobayashi, S.; Zaefferer, S.: Optimisation of Precipitation for the Development of Heat Resistant Fe3Al-based Alloys. Seminar talk, National Institute for Materials Science (NIMS), Tsukuba, Japan (2006)
Zaefferer, S.: Application of orientation microscopy in SEM and TEM for the study of texture formation during recrystallisation processes. Materials Science Seminar, Institute for Materials Science, Krakow, Poland (2005)
Zaefferer, S.: Möglichkeiten und Grenzen der Orientierungsmikroskopie mittels EBSD im Rasterelektronenmikroskop. Werkstoffausschuss & Unterausschuss für Metallographie, Werkstoffanalytik und -simulation des VdeH, Düsseldorf (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…