Sandlöbes, S.; Friák, M.; Dick, A.; Zaefferer, S.; Pei, Z.; Zhu, L.-F.; Sha, G.; Ringer, S.; Neugebauer, J.; Raabe, D.: Combining ab initio calculations and high resolution experiments to improve the understanding of advanced Mg-Y and Mg-RE alloys. 7th Annual Conference of the ARC Centre of Excellence for Design in Light Metals, Melbourne, VIC, Australia (2012)
Konijnenberg, P. J.; Zaefferer, S.; Raabe, D.: Advanced analysis of 3D EBSD data obtained by FIB tomography. NVvM 2012 Materials Science Meeting, Eindhoven, The Netherlands (2012)
Tasan, C. C.; Zaefferer, S.; Raabe, D.: In-situ investigations of small strain plasticity in dual-phase steel. 23rd International Congress of Theoretical and Applied Mechanics (ICTAM), Beijing, China (2012)
Zaefferer, S.; Chen, J.; Konijnenberg, P.: A study on origin and nature of shear bands in cold rolled Mg-3Y alloy using 3D EBSD. 9th Intern. Conference on Magnesium alloys and their applications, Vancouver, Canada (2012)
Zaefferer, S.: An overview on techniques for the measurements of plastic and elastic strain by EBSD and related techniques. EBSD usermeeting der DGK, Hannover, Germany (2012)
Zaefferer, S.: Advanced applications of SEM-based electron diffraction techniques for the characterization of deformation structures of new steels. E-MRS 2012, Strasbourg, France, Strasbourg, France (2012)
Zaefferer, S.: Dislocations in metals: Observations from the atomic scale to macroscopic dimensions. ICMS Workshop, “Open problems between micro and macro systems of agents and particles”, Eindhoven, The Netherlands (2012)
Ram, F.; Zaefferer, S.: Kikuchi Bandlet Method: A Method to Resolve the Source Point Position of an EBSD Pattern. 20th Annual meeting of the German Crystallographic Society, München, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…