Berova, V.; Hengge, K.; Burger, T.; Vega-Paredes, M.; Scheu, C.; Jurzinsky, T.: Accelerated stress test study on CO-tolerant PtRu anode catalysts for reformate PEM fuel cells. Journal of Power Sources 632, 236312 (2025)
Camuti, L.; Kim, S.-H.; Podjaski, F.; Vega-Paredes, M.; Mingers, A. M.; Acartürk, T.; Starke, U.; Lotsch, B. V.; Scheu, C.; Gault, B.et al.; Zhang, S.: Kinetics and direct imaging of electrochemically formed palladium hydride for efficient hydrogen evolution reaction. Physics > Chemical Physics (2025)
Cheraparambil, H.; Vega-Paredes, M.; Scheu, C.; Weidenthaler, C.: Unraveling the Evolution of Dynamic Active Sites of LaNixFe1-xO3 Catalysts During OER. ACS Applied Materials & Interfaces 16 (17), pp. 21997 - 22006 (2024)
Vega-Paredes, M.; Scheu, C.; Aymerich Armengol, R.: Expanding the Potential of Identical Location Scanning Transmission Electron Microscopy for Gas Evolving Reactions: Stability of Rhenium Molybdenum Disulfide Nanocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials and Interfaces 15 (40), pp. 46895 - 46901 (2023)
Liang, Y.; Mrovec, M.; Lysogorskiy, Y.; Vega-Paredes, M.; Scheu, C.; Drautz, R.: Atomic cluster expansion for Pt–Rh catalysts: From ab initio to the simulation of nanoclusters in few steps. Journal of Materials Research 38, pp. 5125 - 5135 (2023)
Berova, V.; Garzón-Manjón, A.; Vega-Paredes, M.; Scheu, C.; Jurzinsky, T.: Influence of Shell Thickness on Durability of Ru@Pt Core-Shell Catalysts for Reformate PEM Fuel Cells. In ECS Meeting Abstracts, MA2022-01 (35), p. 1528. The Electrochemical Society (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.