Leineweber, A.; Stein, F.: Comment on Hajra et al.: “High-temperature phase stability and phase transformations of Niobium-Chromium Laves phase: Experimental and first-principles calculation”. Materials and Design 247, 113373 (2024)
Flores, A.; Chatain, S.; Fossati, P.; Stein, F.; Joubert, J.-M.: Correction: Experimental Investigation and Thermodynamic Assessment of the Cr–Mo–Ti System. Journal of Phase Equilibra and Diffusion 45, p. 433 (2024)
Stein, F.; He, C.: About the Alkemade Theorem and the Limits of its Applicability for the Construction of Ternary Liquidus Surfaces. Journal of Phase Equilibra and Diffusion 45, pp. 489 - 501 (2024)
Gedsun, A.; Stein, F.; Palm, M.: Phase Equilibria in the Fe-Al-Nb(-B) System at 700 degrees C. Journal of Phase Equilibra and Diffusion 43 (4), pp. 409 - 418 (2022)
Distl, B.; Hauschildt, K.; Rashkova, B.; Pyczak, F.; Stein, F.: Phase Equilibria in the Ti-Rich Part of the Ti–Al–Nb System-Part I: Low-Temperature Phase Equilibria Between 700 and 900 °C. Journal of Phase Equilibra and Diffusion 43, pp. 355 - 381 (2022)
Distl, B.; Hauschildt, K.; Pyczak, F.; Stein, F.: Phase Equilibria in the Ti-Rich Part of the Ti–Al–Nb System-Part II: High-Temperature Phase Equilibria Between 1000 and 1300 °C. Journal of Phase Equilibra and Diffusion 43, pp. 554 - 575 (2022)
Gedsun, A.; Stein, F.; Palm, M.: Development of new Fe–Al–Nb(–B) alloys for structural applications at high temperatures. MRS Advances 6, pp. 176 - 182 (2021)
Stein, F.; Leineweber, A.: Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties. Journal of Materials Science 56, pp. 5321 - 5427 (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.