Microstructure And Mechanical Properties Of Additively Manufactured Pearl® Micro AD730®. World PM 2022 Congress and Exhibition, Code 188680, Lyon, France, October 09, 2022 - October 13, 2022. (2022)
Lilensten, L.; Antonov, S.; Raabe, D.; Tin, S.; Gault, B.; Kontis, P.: Deformation of Borides in Nickel-based Superalloys: a Study of Segregation at Dislocations. M & M 2019 - Microscopy & Microanalysis, Portland, OR, USA, August 04, 2019 - August 08, 2019. Microscopy and Microanalysis 25, S2 Ed., pp. 2538 - 2539 (2019)
Collins, D. M.; D'Souza, N.; Panwisawas, C.; Kontis, P.: On the Formation of Heating and Cooling Precipitates from a Superalloy Powder. TMS 2020 Annual Meeting & Exhibition, San Diego, CA, USA (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we aim at significantly enhancing the strength-ductility combination of quinary high-entropy alloys (HEAs) with five principal elements by simultaneously introducing interstitial C/N and the transformation induced plasticity (TRIP) effect. Thus, a new class of alloys, namely, interstitially alloyed TRIP-assisted quinary (five-component) HEAs is being developed.
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…
Despite the immanent advantages of metals and alloys processed by additive manufacturing (e.g. design freedom for complex geometry) and unexpected merits (e.g. superior mechanical performance) of AM processes, there are several remaining issues that need to be addressed in order to practically apply AM alloys to various industries. One of the most important issues is the mechanical behavior of AM alloys under hydrogen environments, since it is easily encountered in the industrial fields and has generally detrimental effects on metals and alloys.