Auinger, M.; Borodin, S.; Evers, S.; Rohwerder, M.: Thermodynamic Studies of Hydrogen Permeation and the Effect of Oxide Formation in Pure Iron Samples. 6th International Conference on Diffusion in Solids and Liquids, Paris, France (2010)
Auinger, M.; Rohwerder, M.: Grain Boundary Oxidation Processes and High Temperature Corrosion. GTT-Workshop on Thermodynamic Simulations in Industry, Herzogenrath, Aachen, Germany (2010)
Auinger, M.; Borodin, S.; Swaminathan, S.; Rohwerder, M.: Thermodynamic Simulations of the Oxidation Processes in Polycrystalline Metallic Alloys. International Workshop “Grain boundary diffusion, stresses and segregation”, Moscow, Russia (2010)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i Cluster6 (Durability) Meeting, Velsen-Noord, The Netherlands (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical Investigation of Electrode Surface Potential Mapping with Scanning Electrochemical Potential Microscopy. The 12th International Scanning Probe Microscopy Conference, Sapporo, Japan (2010)
Rohwerder, M.: Application of Conducting Polymers for the Corrosion Protection of Iron and Zinc. Advances in Corrosion Science for Lifetime Prediction and Sustainability: ISE 8th Spring Meeting, Columbus, Ohio, USA (2010)
Bashir, A.; Muglali, M. I.; Hamou, R. F.; Rohwerder, M.: SECPM Study: Influence of the Tip Material and Its Coating on the Accuracy of Potential Profiling Across Electrical Double Layer at Solid/Liquid Interface. 217th ECS Meeting, Vancouver, Canada (2010)
Hamou, R. F.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical simulation of probing the electric double layer by scanning electrochemical Potential microscopy. 217th ECS Meeting, Vancouver, Canada (2010)
Rohwerder, M.: Self-assembled monolayers in corrosion research. Chemisches Kolloquium, Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe-Universität, Frankfurt a. M., Germany (2010)
Rohwerder, M.: On the meaning of electrode potentials measured by Kelvin probe on coated and bare metal surfaces. 217th ECS Meeting, Vancouver, Canada (2010)
Senöz, C.; Rohwerder, M.: High Resolution Study of Hydrogen Permeation through Metals by Scanning Kelvin Probe Force Microscopy. 217th ECS Meeting, Vancouver, Canada (2010)
Rohwerder, M.: Intelligent corrosion protection by organic and by metal based nano composite coatings. CORROSION 2010, Henry B. Gonzalez Convention Center, San Antonio, TX, USA (2010)
Rohwerder, M.: Geplante Forschung zu Batterien im Rahmen des Zentrums für Elektrochemie (CES) und des Kompetenzverbundes Nord. Batterietag Münster, Münster, Germany (2010)
Auinger, M.; Borodin, S.; Swaminathan, S.; Rohwerder, M.: Thermodynamic Stability and Reaction Sequence for High Temperature Oxidation Processes in Steels. International Symposium “High Temperature Oxidation and Corrosion”, Zushi (Tokyo), Japan (2010)
Evers, S.; Rohwerder, M.: Localized measurement of Hydrogen amount in Metals by SKP. 6th International Conference on Diffusion in Solids and Liquids (DSL 2010), Paris, France (2010)
Rohwerder, M.: Intelligent corrosion protection by organic and by metal based nano composite coatings. Chemical Nanotechnology Talks X, Frankfurt a. M., Germany (2010)
Salgin, B.; Rohwerder, M.: Mobility of Water and Charge Carriers in Polymer/Oxide/Aluminium Alloy Interphases. M2i/DPI Project Meeting, Delft, The Netherlands (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.