Borodin, S.; Rohwerder, M.: Preparation of model single crystalline aluminium oxide films suitable for scanning tunnelling microscopy. DPG Tagung 2008, 72. Jahrestagung der Deutsche Physikalische Gesellschaft, Berlin, Germany (2008)
Michalik, A.; Rohwerder, M.: Long-range ion transport properties of conducting-polymers. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Rohwerder, M.: Intelligent corrosion protection by organic coatings based on conducting polymers. Departmental Seminar at Departement für Chemie und Biochemie der Universität Bern, Bern, Switzerland (2008)
Borissov, D.; Rohwerder, M.: Fundamental Investigation of the Effect of Oxides on the Reaction Kinetics During Hot Dip Galvanizing. GALVATECH `07, 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Osaka, Japan (2007)
Isik-Uppenkamp, S.; Laaboudi, A.; Rohwerder, M.: Delamination of Polymer/Metal Interfaces: On the Correlation of Kinetics and Interfacial Structure. 212th ECS Meeting, Washington, D.C., USA (2007)
Borodin, S.; Rohwerder, M.: STM-investigation of self-assembly of phosphonates on model oxides. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Laaboudi, A.; Isik-Uppenkamp, S.; Rohwerder, M.: Modelling cathodic delamination: Oxygen reduction and interface degradation at a molecularly well defined coating/metal interface. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flagey, Belgium (2007)
Isik-Uppenkamp, S.; Stratmann, M.; Rohwerder, M.: Scanning Kelvin Probe Microscopy for characterisation of iron mobility at buried interfaces. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Van De Putte, T.; Borissov, D.; Loison, D.; Penning, J.; Rohwerder, M.; Claessens, S.: Reduction of SiO2 Surface Oxides by Solute Carbon to Improve the Galvanizability of Si alloyed AHSS. International Conference on New Developments in Advanced High Strength Sheet Steels, Orlando, FL, USA (2007)
Rohwerder, M.: Inherent delamination protection by novel zinc alloys. GALVATECH `07, 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Osaka, Japan (2007)
Rohwerder, M.: Release-Systeme für die Selbstheilung von Polymer/Metall-Grenzflächen. 2.WING Konferenz (BMBF): Der Stoff, aus dem Innovationen sind., Aachen, Germany (2006)
Stempniewicz, M.; Rohwerder, M.; Marlow, F.: Release of guest molecules from modified mesoporous silica. 5th International Mesostructured Materials Symposium, Shanghai, China (2006)
Michalik, A.; Paliwoda-Porebska, G.; Rohwerder, M.: Mechanism of corrosion protection by conducting polymers. 57th Annual Meeting of the International Society of Electrochemistry, Edinburgh, UK (2006)
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The project’s goal is to synergize experimental phase transformations dynamics, observed via scanning transmission electron microscopy, with phase-field models that will enable us to learn the continuum description of complex material systems directly from experiment.
In order to prepare raw data from scanning transmission electron microscopy for analysis, pattern detection algorithms are developed that allow to identify automatically higher-order feature such as crystalline grains, lattice defects, etc. from atomically resolved measurements.
The general success of large language models (LLM) raises the question if they could be applied to accelerate materials science research and to discover novel sustainable materials. Especially, interdisciplinary research fields including materials science benefit from the LLMs capability to construct a tokenized vector representation of a large…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…