Malyar, N.; Micha, J.-S.; Dehm, G.; Kirchlechner, C.: Dislocation slip transfer at Cu grain boundaries analyzed by µLaue diffraction. Gordon Research Seminar Thin Film & Small Scale Mechanical Behavior, Lewiston, ME, USA (2016)
Malyar, N.; Micha, J.-S.; Dehm, G.; Kirchlechner, C.: Dislocation slip transfer at Cu grain boundaries analyzed by µLaue diffraction. Gordon Research Conference Thin Film & Small Scale Mechanical Behavior, Best Poster Prize, Lewiston, ME, USA (2016)
Peter, N. J.; Kirchlechner, C.; Liebscher, C.; Dehm, G.: Effect of the atomistic grain boundary structure on dislocation interaction in copper. Gordon Research Conference (GRC) 2016, Thin Film & Small Scale Mechanical Behavior
, Lewiston, ME, USA (2016)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Intermetallic Phases. Int. Conf. The Materials Chain: From Discovery to Production, University Bochum, Bochum, Germany (2016)
Meiners, T.; Liebscher, C.; Dehm, G.: Atomic structure and segregation phenomena at copper grain boundaries. EMC2016, The 16th European Microscopy Congress, Lyon, France (2016)
Peter, N. J.; Kirchlechner, C.; Liebscher, C.; Dehm, G.: Beam induced atomic migration at Ag containing nanofacets at an asymmetric Cu grain boundary. European Microscopy Congress (EMC) 2016
, Lyon, France (2016)
Malyar, N.; Jaya, B. N.; Micha, J.-S.; Dehm, G.; Kirchlechner, C.: Orientation dependence of dislocation transmission through twin-boundaries studied by in situ μLaue diffraction. ECI - Nano- and Micromechanical Testing in Materials Research and Development V, Albufeira, Portugal (2015)
Hieke, S. W.; Dehm, G.; Scheu, C.: Electron microscopy investigation of solid state dewetted epitaxial Al thin films on sapphire. International Workshop on Advanced and In-situ Microscopies of Functional Nanomaterials and Devices (IAMNano 2015), Hamburg, Germany (2015)
Hieke, S. W.; Dehm, G.; Scheu, C.: Investigation of solid state dewetting phenomena of epitaxial Al thin films on sapphire using electron microscopy. TEM-UCA: Transmission Electron Microscopy of Nanomaterials - European Summer Workshop (TEM-UCA 2015), Cádiz, Spain (2015)
Hodnik, N.; Dehm, G.; Mayrhofer, K. J. J.: Electrochemical water based in-situ TEM: case study of platinum based nanoparticles potential- and time-dependent changes. IAM Nano 2015 , Hamburg, Germany (2015)
Malyar, N.; Jaya, B. N.; Dehm, G.; Kirchlechner, C.: Dislocation transmission in bi-crystalline micro pillars studied by in situ SEM and in situ µLaue diffraction. Workshop „Understanding Grain Boundary Migration – Theory Meets Experiment”, Günzburg, Germany (2015)
Hieke, S. W.; Dehm, G.; Scheu, C.: Temperature induced faceted hole formation in epitaxial Al thin films on sapphire. 8th International Conference on High Temperature Capillarity (HTC-2015), Bad Herrenalb, Germany (2015)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: A New Method to Study the Composition Dependence of Mechanical Properties of Laves Phases. Intermetallics 2015, Educational Center Kloster Banz, Bad Staffelstein, Germany (2015)
Hieke, S. W.; Dehm, G.; Scheu, C.: Solid state dewetting phenomena of epitaxial Al thin films on sapphire (α-Al2O3). 2nd International Multidisplinary Microscopy Congress (InterM 2014), Oludeniz, Fethiye, Turkey (2014)
Jaya, B. N.; Kirchlechner, C.; Dehm, G.: Fracture toughness testing of brittle materials at the micron-scale. Thin Film & Small Scale Mechanical Behavior - Gordon Research Conference, Boston, MA, USA (2014)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…