Azzam, W.; Zharnikov, M.; Rohwerder, M.; Bashir, A.: Functional group selective STM Imaging in self-assembled monolayers: Benzeneselenol on Au(111). Applied Surface Science 427 (Part B), pp. 581 - 586 (2018)
Luo, H.; Li, Z.; Chen, Y.-H.; Ponge, D.; Rohwerder, M.; Raabe, D.: Hydrogen effects on microstructural evolution and passive film characteristics of a duplex stainless steel. Electrochemistry Communucations 79, pp. 28 - 32 (2017)
Altin, A.; Rohwerder, M.; Erbe, A.: Cyclodextrins as carriers for organic corrosion inhibitors in organic coatings. Journal of the Electrochemical Society 164 (4), pp. C128 - C134 (2017)
Fuertes, N.; Bengtsson, V.; Pettersson, R. F. A.; Rohwerder, M.: Use of SVET to evaluate corrosion resistance of heat tinted stainless steel welds and effect of post-weld cleaning. Materials and Corrosion - Werkstoffe und Korrosion 68 (1), pp. 7 - 19 (2017)
Zidi, R.; Bekri-Abbes, I.; Sdiri, N.; Vimalanandan, A.; Rohwerder, M.; Srasra, E.: Electrical and dielectric investigation of intercalated polypyrrole montmorillonite nanocomposite prepared by spontaneous polymerization of pyrrole into Fe(III)-montmorillonite. Materials Science and Engineering B-Solid State Materials for Advanced Technology 212, pp. 14 - 23 (2016)
Tarzimoghadam, Z.; Rohwerder, M.; Merzlikin, S. V.; Bashir, A.; Yedra , L.; Eswara, S.; Ponge, D.; Raabe, D.: Multi-scale and spatially resolved hydrogen mapping in a Ni–Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718. Acta Materialia 109, pp. 69 - 81 (2016)
Borodin, S.; Vogel, D.; Swaminathan, S.; Rohwerder, M.: Direct In-Situ Investigation of Selective Surface Oxidation During Recrystallization Annealing of a Binary Model Alloy. Oxidation of Metals 85 (1-2), pp. 51 - 63 (2016)
Dandapani, V.; Tran, T. H.; Bashir, A.; Evers, S.; Rohwerder, M.: Hydrogen Permeation as a Tool for Quantitative Characterization of Oxygen Reduction Kinetics at Buried Metal-Coating Interfaces. Electrochimica Acta 189, pp. 111 - 117 (2016)
Dandapani, V.; Altin, A.; Merola, C.; Bashir, A.; Heinen, E.; Rohwerder, M.: Probing the buried metal-organic coating interfacial reaction kinetic mechanisms by a hydrogen permeation based potentiometric approach. Journal of the Electrochemical Society 163 (13), pp. C778 - C783 (2016)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.