Genchev, G.; Erbe, A.: Raman Spectroscopy of Mackinawite FeS in Anodic Iron Sulfide Corrosion Products. Journal of the Electrochemical Society 163 (6), pp. C333 - C338 (2016)
Nayak, S.; Erbe, A.: Mechanism of the potential-triggered surface transformation of germanium in acidic medium studied by ATR-IR spectroscopy. Physical Chemistry Chemical Physics 18, pp. 25100 - 25109 (2016)
Xie, K.; Yang, F.; Ebbinghaus, P.; Erbe, A.; Muhler, M.; Xia, W.: A reevaluation of the correlation between the synthesis parameters and structure and properties of nitrogen-doped carbon nanotubes. Journal of Energy Chemistry 24 (4), pp. 407 - 415 (2015)
Beese-Vasbender, P. F.; Nayak, S.; Erbe, A.; Stratmann, M.; Mayrhofer, K. J. J.: Electrochemical characterization of direct electron uptake in electrical microbially influenced corrosion of iron by the lithoautotrophic SRB Desulfopila corrodens strain IS4. Electrochimica Acta 167, pp. 321 - 329 (2015)
Krzywiecki, M.; Grządziel, L.; Sarfraz, A.; Iqbal, D.; Szwajca, A.; Erbe, A.: Zinc oxide as a defect-dominated material in thin films for photovoltaic applications - experimental determination of defect levels, quantification of composition, and construction of band diagram. Physical Chemistry Chemical Physics 17 (15), pp. 10004 - 10013 (2015)
Paunoiu, A.; Moirangthem, R. S.; Erbe, A.: Whispering gallery modes in intrinsic TiO2 microspheres coupling to the defect-related photoluminescence after visible excitation. Physica Status Solidi (RRL) - Rapid Research Letters 9, pp. 241 - 244 (2015)
Iqbal, D.; Sarfraz, A.; Stratmann, M.; Erbe, A.: Solvent-starved conditions in confinement cause chemical oscillations excited by passage of a cathodic delamination front. Chemical Communications 51 (89), pp. 16041 - 16044 (2015)
Krzywiecki, M.; Sarfraz, A.; Erbe, A.: Towards monomaterial p-n junctions: single-step fabrication of tin oxide films and their non-destructive characterisation by angle-dependent X-ray photoelectron spectroscopy. Applied Physics Letters 107 (23), 231601 (2015)
Toparli, C.; Sarfraz, A.; Erbe, A.: A new look at oxide formation at the copper/electrolyte interface by in situ spectroscopies. Physical Chemistry Chemical Physics 17, pp. 31670 - 31679 (2015)
Groche, P.; Wohletz, S.; Erbe, A.; Altin, A.: Effect of the primary heat treatment on the bond formation in cold welding of aluminum and steel by cold forging. Journal of Materials Processing Technology 214 (10), pp. 2040 - 2048 (2014)
Kemnade, N.; Chen, Y.; Muglali, M. I.; Erbe, A.: Electrochemical reductive desorption of alkyl self-assembled monolayers studied in situ by spectroscopic ellipsometry: Evidence for formation of a low refractive index region after desorption. Physical Chemistry Chemical Physics 16 (32), pp. 17081 - 17090 (2014)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…